文档介绍:该【数理方程复习公开课一等奖课件赛课获奖课件 】是由【读书百遍】上传分享,文档一共【39】页,该文档可以免费在线阅读,需要了解更多关于【数理方程复习公开课一等奖课件赛课获奖课件 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。三类基本方程在直角坐标系中的表达
一、 波动方程
二、热传导方程
三、拉普拉斯方程
定解问题的适定性:解的存在性、解的唯一性和解的稳定性;
若一种定解问题存在唯一且稳定的解,则此问题称为适定的。
定解问题=泛定方程+定解条件
边界条件确定本征值和本征函数
规定掌握三类边界条件的常见例子(见第一章课件,如边界吸热,放热,绝热,自由冷却,边界固定,边界为自由端等)以及初始条件的表述措施。
初始条件确定级数叠加系数
1、线性二阶偏微分方程的一般形式
该方程为齐次的
该方程为非齐次的
数学物理方程的分类
方程为双曲型
方程为抛物型
方程为椭圆型
若方程中与u有关的项幂指数均为1,方程为线性。
行 波 法
一、行波法重要用来求解无界区域内波动方程的定解问题
——达朗贝尔公式
对无限长区域内的波动方程,任意扰动总是以行波的形式分为
两个方向传播出去,波速为 ,也即 :
以速度 沿 负方向移动的行波
以速度 沿 正方向移动的行波
通解的物理意义:
二、一般的二阶齐次线性偏微分方程特征线的求法:
其特征方程为:
其特征方程的解即为特征线方程:
如
双曲型方程
过其中每一点有两条不一样的实的特征线
椭圆型方程
过其中每一点不存在实的特征线
抛物型方程
过其中每一点有一条实的特征线
三、傅里叶级数
傅里叶变换式
傅里叶逆变换式
复数形式的傅里叶变换
基本思想:通过度离变量,把偏微分方程分解成几种常微分
方程,常微分方程带有附加条件而构成本征值问题。
分离变量(傅立叶级数)法
规定能纯熟应用分离变量法求解波动方程,热传导方程,拉普拉
斯方程(矩形区域和圆形区域)的定解问题。
解题环节:
边界与否齐次
写出本征值、本征函数、待求物理量的傅立叶级数展开式
边界齐次化
写出定解问题
方程非齐次项和初值条件的级数展开
代入原泛定方程得到另一变量的微分方程和初值
写出解的体现式和系数