文档介绍:秋风清,秋月明,落叶聚还散,寒鸦栖复惊。
1 概述
在介绍音频功率放大器的文章中,有时会看到“THD+N”,THD+N是英文Total Hormonic Distortion +Noise 的缩写,译成中文是“总谐波失真加噪声”。它是音频功率放大器的一个主要性能指标,也是音频功率放大器的额定输出功率的一个条件。
THD+N性能指标
THD+N表示失真+噪声,因此THD+N自然越小越好。但这个指标是在一定条件下测试的。同一个音频功率放大器,若改变其条件,其THD+N的值会有很大的变动。
这里指的条件是,(或VDD)、一定的负载电阻RL、一定的输入频率FIN(一般常用1KHZ)、一定的输出功率Po下进行测试。若改变了其中的条件,其THD+N值是不同的。例如,某一音频功率放大器,在VDD=3V、FIN=1kHz、RL=32Ω、Po=25mW条件下测试,其TDH+N=%,若将RL改成16欧,使Po增加到50mW,VDD及FIN不变,所测的TDH+N=%。
一般说,输出功率小(如几十mW)的高质量音频功率放大器(如用于MP3播放机),它的THD+N指标可达10-5,具有较高的保真度。输出几百mW的音频功率放大器,要用扬声器放音,其THD+N一般为10-4;输出功率在1~2W,其THD+N更大些,~%.THD+N这一指标大小与音频功率放大器的结构类别有关(如A类功放、D类功放),例如D类功放的噪声较大,则THD+N的值也较A类大。
这里特别要指出的是资料中给出的THD+N这个指标是在FIN=1kHz下给出的,在实际上音频范围是20Hz~20kHz,则在20Hz~20kHz范围测试时,其THD+N要大得多。例如,某音频功率放大器在1kHz时测试,其TDH+N=%。若FIN改成20Hz-20kHz,,其他条件不变,其THD+%。
输出额定功率的条件
过去有用“不失真输出功率是多少”这种说法来说明其输出功率大小。这话的意思指的是输出的峰峰值没有“削顶”现象出现,即Vout(P-P)=Vcc-(上压差+下压差)这种说法是不科学的。即使不产生削顶,它也有一定的失真。较科学的说法是THD+N在某一指标下可输出的功率是多少。电压、一定的负载电阻RL时、一定的THD+N下可输出多少功率。这输出功率一般是在这条件下的最大输出功率,称为额定功率。的大小。在THD+N不变条件下,=5V,RL=4Ω时,输出额定功率为2W;=3V、RL=4Ω时,。当然,若额定功率为2W,如果增加输入电压使输出超出2W,则其TDH+N必然大于额定值时的THD+N值。
2 原理图设计
方案选择
本次模拟电子线路课程设计(即硬件设计)我做的是555定时电路设计,本着需要达到一定的性能指标的前提下,同时又考虑到我们这是第一次动手操作焊接电路板,因而电路图不能够太复杂,我在网上搜索到如下两种设计示例:
示例一中具体如图一:
方案一原理图
如上图所示,该电路运用到两个运算放大器。上面一个LM4700是一个反相输出负反馈放大电路。如我们的模拟电子线路中的知识知道:这样的一个电路是为了稳定输出,防止饱和失真以及截止失真。同时,下面的一个LM4700是一个反相输出正反馈功率放大电路,则由理论上来说,这里是对源信号的一个功率放大,以达到对声音功率放大的结果。
如上图所示,方案中也都是利用到了运算放大器的放大运算作用,其中利用到了大量的电阻和电容这样对其中的噪声的过滤就会有很好的作用,但是与此同时,这样的话,元件数太多,焊接的时候会相对比较麻烦。
但是从另外一个方面来说,由于该电路中的放大作用只是利用了运算放大器的运算放大作用,因此最后的性能效果不会很好,对于噪声也没有一定的滤出作用,基于上述分析,我决定放弃方案一。
如此,我就选择了另外的一个方案,具体电路图如下:
方案二原理图
原理图设计分析
我所选择的电路图中,基本上综合了上面所淘汰的三个原理图的特点,利用了TDA2030的反相输出来稳定输出,同时正反馈中来进行放大,并且利用了二极管VD1、VD2来单向导电,然后在输出端口利用一个电阻和电容的并联关系来选择输出。另外元件数目也不是很多,操作实际可行。
D类音频功率放大器是基于脉冲宽度调制(PWM)技术的开关放大器,包括PWM调制器、功率H桥、三角波发生器和低通滤波器等。文章首先对D类音频功率放大器与传统的音频功放进行了分析和比较,然后对D类音频功率放大器的工作原理、系统结构和两种拓扑结构进行了详细的分析和研究,最后对具有低功耗、低失真、高效率等高性能D类音频功放设计的难点和要点进行了研究,并提供了可行的解决方案,展