1 / 6
文档名称:

线性系统的稳定性和稳态误差分析.doc

格式:doc   大小:284KB   页数:6页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

线性系统的稳定性和稳态误差分析.doc

上传人:373116296 2018/7/28 文件大小:284 KB

下载得到文件列表

线性系统的稳定性和稳态误差分析.doc

文档介绍

文档介绍:实验五自动控制系统的稳定性和稳态误差分析
一、实验目的
1、研究高阶系统的稳定性,验证稳定判据的正确性;
2、了解系统增益变化对系统稳定性的影响;
3、观察系统结构和稳态误差之间的关系。
二、实验任务
1、稳定性分析
欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。
(1)已知单位负反馈控制系统的开环传递函数为,用MATLAB编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。
在MATLAB命令窗口写入程序代码如下:
z=-
p=[0,-,-,-3]
k=
Go=zpk(z,p,k)
Gc=feedback(Go,1)
Gctf=tf(Gc)
dc=
dens=poly2str(dc{1},'s')
运行结果如下:
dens=
s^4 + s^3 + s^2 + s +
dens是系统的特征多项式,接着输入如下MATLAB程序代码:
den=[1,,,,]
p=roots(den)
运行结果如下:
p =
-
-
- +
- -
p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。
下面绘制系统的零极点图,MATLAB程序代码如下:
z=-
p=[0,-,-,-3]
k=
Go=zpk(z,p,k)
Gc=feedback(Go,1)
Gctf=tf(Gc)
[z,p,k]=zpkdata(Gctf,'v')
pzmap(Gctf)
grid
运行结果如下:
z =
-
p =
-
-
- +
- -
k =

输出零极点分布图如图3-1所示。
图3-1 零极点分布图
(2)已知单位负反馈控制系统的开环传递函数为,当取=1,10,100用MATLAB编写程序来判断闭环系统的稳定性。
只要将(1)代码中的k值变为1,10,100,即可得到系统的闭环极点,从而判断系统的稳定性,并讨论系统增益k变化对系统稳定性的影响。
K=1 k=10 k=100

2、稳态误差分析
(1)已知如图3-2所示的控制系统。其中,试计算当输入为单位阶跃信号、单位斜坡信号和单位加速度信号时的稳态误差。
图3-2 系统结构图
从Simulink图形库浏览器中拖曳Sum(求和模块)、Pole-Zero(零极点)模块、Scope(示波器)模块到仿真操作画面,连接成仿真框图如图3-3所示。图中,Pole-Zero(零极点)模块建立,信号源选择Step(阶跃信号)、Ramp(斜坡信号)和基本模块构成的加速度信号。为更好观察波形,将仿真器参数中的仿真时间和示波器的显示时间范围设置为300。
图3-3 系