文档介绍:主要内容
阐述频谱分析仪测量的主要应用;
介绍频谱分析仪内部结构及工作原理;
说明频率分辨率、灵敏度和动态范围等重要指标在分析仪测量中的重要作用。
8563A
SPECTRUM ANALYZER 9 kHz - GHz
要达到的学习目标
了解频谱分析仪结构原理,了解频谱
分析仪性能指标;
熟练应用频谱分析仪。
1 频谱分析仪应用
从事通信工程的技术人员,在很多时候需要对信号进行分析,针对不同观察域,分别用示波器、频谱分析仪和矢量分析仪观察信号;
示波器只能观察信号的幅度、周期和频率;但频谱分析仪还可以分析信号的频率分布信息、频率、功率、谐波、杂波、噪声、干扰和失真,而矢量分析仪可以在频谱分析仪基础上分析数字调制信号调制质量。
频域和时域
早期的信号观察,主要依赖示波器在时域内观察信号;傅立叶变换告诉我们:任何时域内电信号都是由一个或多个不同频率、不同幅度和不同相位的正弦波组成的,但应用示波器无法观察到频域内信息,只能在时域内观察;应用频域测量,就能以频谱的形式显示出每个正弦波的幅度随频率变化的情况;
下图是信号在时域和频域内观察的结果,由此可以清楚看出信号在频域观察的必要性:时域得到的是信号的波形信息,不能测量混合信号,如果存在干扰或失真信号,在时域上无法区分有用信号和无用信号;
在频域上可以准确地测量有用信号和无用信号的各种参数。
幅度
(功率)
频率
时域测量
(示波器)
频域测量
(频谱仪)
时间
2 频谱分析仪结构及原理
频谱分析仪的类型:傅立叶频谱分析仪和超外差式频谱分析仪
FFT频谱分析仪:被分析的信号通过模数转换器采样,变成离散信号,采样值被保存在一个存储器中,经过离散FFT变换计算,计算出信号的频谱
FFT频谱分析仪不足之处:FFT分析仪不适合脉冲信号的分析,而且由于A/D转换器速度的限制,FFT分析仪仅适合测量低频信号
超外差频谱分析仪
这种频谱分析仪对输入信号的分析,并不是从时间特性计算得来的,而是由频域分析直接决定的。对于这样的分析,必须把输入频谱分成各个独立的部分。可调带通滤波器就是为此目的而使用的
超外差频谱分析仪内部结构如下图
滤波器
频率基准
对数
放大器
RF 输入
衰减器
混频器
IF
滤波器
检波器
视频
滤波器
本地
振荡器
扫频
发生器
IF
增益
输入
显示
原理分析
信号分析过程如下:被测信号经过滤波和衰减后,和LO信号进入混频器混频转换成中频信号,因为LO频率可变,所以输入信号都可以被转换成固定中频,经放大后进入中频滤波器(中心频率固定),然后进入一个对数放大器,对中频信号进行压缩,然后进行包络检波,所得信号即视频信号,为了平滑显示,在包络检波之前通过可调低通滤波器,即视频滤波;视频信号在阴极射线管内垂直偏转,即显示出在信号的幅度,同时,由于显示的频率值是扫频发生器电压值的函数,所以对应被测信号的频率值,于是,被测信号的信息显示在LCD上
幅度、频率显示原理
幅度显示原理:
经过中频滤波器的中频信号功率就是反应了输入信号的功率。检测的方法就是用一个检波器,将它变为电压输出,体现在纵轴的幅度。当然还要经过D/A转换和一些数据处理,加一些修正和一些对数、线性变换。这足以给我们带来信号分析上的许多方便。
频率显示原理:
频谱分析是要分析频域的。一个信号要分析两个参数,一是幅度,二是频率。幅度已经得出,而频率和幅度要对应起来,在某一频率是什么幅度。如何与幅度对应起来。其实很简单。它是通过本振与扫描电压对应起来的。本振是一个压流振荡器。本振信号是个扫描信号。扫描控制是由扫描控制器来完成的。它同时控制显示器的横坐标。从左到右当扫描电压在OV时,在显示器上是0点,对本振信号来说是F1点,即起始频率点。当扫描电压到10V时,在显示器上是终止频率点,本振电压就是在终止频率点,中间是线性的。通过这样的方法,使得显示器坐标的每一点与本振F1、F2的每一点对应起来。。当我们操作频谱仪进行分析时,实际是在改变本振信号的频率。