1 / 61
文档名称:

08 Nonlinear Equations and Optimization.ppt

格式:ppt   页数:61
下载后只包含 1 个 PPT 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

08 Nonlinear Equations and Optimization.ppt

上传人:中国课件站 2011/9/6 文件大小:0 KB

下载得到文件列表

08 Nonlinear Equations and Optimization.ppt

文档介绍

文档介绍:Introduction to puting -- A Matrix Vector Approach Using Matlab Written by Charles Loan
陈文斌
复旦大学
Chapter 8 Nonlinear Equations and Optimization
Finding Roots
Minimizing a function of one variable
Minimizing multivariate functions
Solving systems of nonlinear equations
We consider several types of nonlinear problems. They differ in whether or not the solution sought is a vector or a scalar and whether or not the goal is to produce a root or a minimizer of some given function. The presentation anized around a family of “orbit” problems. Suppose the vector-valued functions
Specify the location at time t of a pair of s that go around the Sun. Assume that the orbits are elliptical and that the sun is situated at (0,0).
Question 1. At what times are the s and the sun collinear? If f(t) is the the sine of the angle between P1 and P2, then this problem is equivalent to finding a zero of f(t). We focus on the bisection and Newton methods, and the Matlab zero-finder:
fzero
Question 2. How close do the two s get for a period of time? If f(t) is distance from P1 to P2, then this is a single-variable minimization problem. We develop the method of golden section search and discuss the Matlab minmizer fmin.
Question 3. How close do the two orbits get? The method of steepest descent and Matlab multivariable minimizer fmins are designed to solve problems of this variety.
Question 4. Where (if at all) do the two orbits intersect? This is an example of a multivariable root-finding problem:
The Newton framework for systems of nonlinear equations is discussed. Related topics include the use of finite differences to approximate the Jacobian and the Gauss-Newton method for the nonlinear least squares problem.
Finding Roots
quintic polynomial
Algorithms in this area are iterative and proceed by producing a sequence of numbers that converge to a root of interest.
Where do we start the iteration?
Does the iteration converge and how fast?
How do we know when to terminate

最近更新

2025年茂名职业技术学院单招职业技能考试模拟.. 41页

2025年荆门职业学院单招职业倾向性考试模拟测.. 40页

2026年广州城建职业学院单招综合素质考试模拟.. 42页

2026年广西单招联合测试题附答案 42页

2025年衡阳幼儿师范高等专科学校单招职业适应.. 39页

2026年广西幼儿师范高等专科学校单招职业倾向.. 43页

2025年西南财经大学天府学院单招职业倾向性测.. 40页

2025年西宁城市职业技术学院单招职业适应性考.. 40页

2025年西安医学高等专科学校单招职业技能考试.. 39页

2026年广西英华国际职业学院单招综合素质考试.. 42页

2025年西安电力高等专科学校单招职业倾向性测.. 41页

2026年往年化工单招试题附答案 42页

2025年西安高新科技职业学院单招职业技能测试.. 40页

2026年德阳科贸职业学院单招职业倾向性测试题.. 43页

2025年贵州城市职业学院单招职业技能考试模拟.. 41页

2026年承德石油单招测试题必考题 41页

2026年揭阳职业技术学院单招综合素质考试模拟.. 42页

2025年贵州电子商务职业技术学院单招职业适应.. 39页

2026年新疆职业大学单招职业适应性测试题库必.. 40页

2026年无锡南洋职业技术学院单招职业倾向性测.. 42页

2025年贵阳康养职业大学单招职业倾向性考试模.. 41页

2026年林州建筑职业技术学院单招职业倾向性测.. 41页

2025年辽宁城市建设职业技术学院单招职业适应.. 40页

2026年武威单招测试题及答案1套 41页

2025年辽宁民族师范高等专科学校单招综合素质.. 40页

2025年辽宁省沈阳市单招职业倾向性测试模拟测.. 40页

2025年重庆市《保安员证》考试题库含答案 39页

预防滑倒、绊倒及跌落专题培训课件 45页

混凝土工程培训课件优秀PPT 26页

小学数学六年级下册《鸽巢问题》作业设计 9页