1 / 14
文档名称:

二次函数应用题.doc

格式:doc   大小:513KB   页数:14页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

二次函数应用题.doc

上传人:bjy0415 2018/11/7 文件大小:513 KB

下载得到文件列表

二次函数应用题.doc

文档介绍

文档介绍:二次函数应用题
1.(13衢州中考)某果园有100棵橘子树,,每多种一颗树,,果园橘子总个数为y个,则果园里增种棵橘子树,橘子总个数最多.
【考点】二次函数的应用.
【分析】解:假设果园增种x棵橙子树,那么果园共有(x+100)棵橙子树,
∵每多种一棵树,平均每棵树就会少结5个橙子,∴这时平均每棵树就会少结5x个橙子,
则平均每棵树结(600﹣5x)个橙子.∵果园橙子的总产量为y,∴则y=(x+100)(600﹣5x)=﹣5x2+100x+60000,∴当x=﹣=﹣=10(棵)时,橘子总个数最多.
【解】 10
【点评】此题主要考查了二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.
【已用书目】
2.(13山西中考)如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9m,AB=36m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为 m.

第2题图
【分析】以C为原点建立平面直角坐标系,如右上图,依题意,得B(18,-9),
设抛物线方程为:,将B点坐标代入,得a=-,所以,抛物线方程为:,E点纵坐标为y=-16,代入抛物线方程,-16=,解得:x=24,所以,DE的长为48m.
【解】 48
【已用书目】
3.(13鞍山中考),每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
【考点】二次函数的应用.
【分析】(1)利用待定系数法求得y与x之间的一次函数关系式;
(2)根据“利润=(售价﹣成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.
【解】(1)由题意,可设y=kx+b,
把(5,30000),(6,20000)代入得:,解得:,
所以y与x之间的关系式为:y=﹣10000x+80000;
(2)设利润为W,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)
=﹣10000(x2﹣12x+32)=﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000
所以当x=6时,W取得最大值,最大值为40000元.
答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.
【点评】本题主要考查利用函数模型(二次函数与一次函数),:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识.
【已用书目】

4.(13咸宁中考)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,,那么政府为他承担的总差价最少为多少元?
【考点】二次函数的应用.
【分析】(1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价﹣成本价,得w=(x﹣10)(﹣10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣10x2+600x﹣5000=3000,求出
x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.
【解】(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600,
即政府这个月为他承担的总差价为600元.
(2)依题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000
∵a=﹣10<0,∴当x