文档介绍:中考总复习一:实数
一、目标与策略
明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!
学习目标:
(一)有理数
理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.
借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).
理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).
理解有理数的运算律,并能运用运算律简化运算.
能运用有理数的运算解决简单的问题.
能对含有较大数字的信息作出合理的解释和推断.
(二)实数
了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根.
了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.
了解无理数和实数的概念,知道实数与数轴上的点—一对应.
能用有理数估计一个无理数的大致范围.
,能用计算器进行近似计算,并按问题的要求对结果取近似值.
学习策略:
对于实数的有关概念,应尽量从实际问题入手,便于帮助我们理解各概念的内涵.
复习实数的运算,应注重在具体情境中体会运算的含义,明确各运算法则的异同,正确地使用运算定律,,提倡算法多样化,减少繁难的笔算,对于较复杂的实数的运算,可以借助计算器进行运算.
应注重运用实数及其运算解决实际问题,并能对运算的结果作出合理的解释,并赋予实际意义.
二、学习与应用
“凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对性。我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。
知识框图
通过知识框图,先对本单元知识要点有一个总体认识。
知识要点梳理
认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。
详细内容请参看网校资源ID:#tbjx6#227715
知识点一:实数的分类
(一)按定义分类:
(二)按性质符号分类:
注:0既不是数也不是数.
(三)有理数:
和统称为有理数或者“形如(m,n是整数n≠0)”的数叫有理数.
(四)无理数:
无限小数叫无理数.
(五)实数:
和统称为实数.
知识点二:实数的相关概念
(一)相反数
(1)代数意义:只有不同的两个数,.
(2)几何意义:在数轴上原点的,与原点距离的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点.
(3)、b互为相反数a+b= .
(二)绝对值
(1)代数意义:正数的绝对值是;负数的绝对值是;:
(2)几何意义:一个数a的绝对值就是上表示数a的点与
,所以绝对值的几何意义本身就揭示了绝对值的本质,:若a是实数,则|a|≥.
(三)倒数
(1)实数的倒数是; 没有倒数;
(2)、b互为倒数
(四)平方根
(1)如果一个数的等于a,,它们;0有平方根,它是;负数
(a≥0)的平方根记作.
(2)一个正数a的平方根,(a≥0)的平方根记作.
(五)立方根
如果x3=a,;一个负数有一个的立方根;零的立方根仍是.
知识点三:实数与数轴
数轴定义:
规定了, 和的线叫做数轴,数轴的三要素缺一不可.
每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.
知识点四:实数大小的比较
(一)对于数轴上的任意两个点,靠的点所表示的数较大.
(二)正数都大于,负数都小于,两个正数,绝对值
的那个正数大;两个负数;绝对值大的.
(三)对于实数a、b,若a-b>0a b;
a-b=0a b;
a-b<0a b.
(四)对于实数a,b,c,若a>b,b>c,则a c.
(五)无理数的比较大小:
利用平方转化为有理数:如果a>b>0,a2>b2a b ;或利用倒数转化:如比较与.
知识点五:实数的运算
(一)加法
同号两数相加,取符号,并把相加;绝对值不相等的异号两数相加,取绝对值的加数的符号,并用绝对值减去
绝对值;互为相反数的两个数相加得;一个数同相加,仍得这个数.
(二)减法
减去一个数等于加上这个数的.
(三)乘法
几个非零实数相乘,积的符号由决定,当负因数有
个时,积为正;当负因数有个时,,有一个