文档介绍:高考最全二次方程根的分布归纳
1、一元二次方程根的分布情况
设方程的不等两根为且,相应的二次函数为,方程的根即为二次函数图象与轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)
表一:(两根与0的大小比较即根的正负情况)
分布情况
两个负根即两根都小于0
两个正根即两根都大于0
一正根一负根即一个根小于0,一个大于0
大致图象()
得出的结论
大致图象()
得出的结论
综合结论(不讨论)
表二:(两根与的大小比较)
分布情况
两根都小于即
两根都大于即
一个根小于,一个大于即
大致图象()
得出的结论
大致图象()
得出的结论
综合结论(不讨论)
表三:(根在区间上的分布)
分布情况
两根都在内
两根有且仅有一根在内
(图象有两种情况,只画了一种)
一根在内,另一根在内,
大致图象()
得出的结论
或
大致图象()
得出的结论
或
综合结论(不讨论)
——————
根在区间上的分布还有一种情况:两根分别在区间外,即在区间两侧,(图形分别如下)需满足的条件是
(1)时,; (2)时,
对以上的根的分布表中一些特殊情况作说明:
(1)两根有且仅有一根在内有以下特殊情况:
若或,则此时不成立,但对于这种情况是知道了方程有一根为或,可以求出另外一根,然后可以根据另一根在区间内,从而可以求出参数的值。如方程在区间上有一根,因为,所以,另一根为,由得即为所求;
方程有且只有一根,且这个根在区间内,即,此时由可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。如方程有且一根在区间内,求的取值范围。分析:①由即得出;②由即得出或,当时,根,即满足题意;当时,根,故不满足题意;综上分析,得出或
根的分布练习题
例1、已知二次方程有一正根和一负根,求实数的取值范围。
解:由即,从而得即为所求的范围。
例2、已知方程有两个不等正实根,求实数的取值范围。
解:由
或即为所求的范围。
例3、已知二次函数与轴有两个交点,一个大于1,一个小于1,求实数的取值范围。
解:由即即为所求的范围。
例4、已知二次方程只有一个正根且这个根小于1,求实数的取值范围。
解:由题意有方程在区间上只有一个正根,则即为所求范围。
(注:本题对于可能出现的特殊情况方程有且只有一根且这个根在内,由计算检验,均不复合题意,计算量稍大)
2、二次函数在闭区间上的最大、最小值问题探讨
设,则二次函数在闭区间上的最大、最小值有如下的分布情况:
即
图象
最大、最小值
对于开口向下的情况,讨论类似。其实无论开口向上还是向下,都只有以下两种结论:
(1)若,则,;
(2)若,则,
另外,当二次函数开口向上时,自变量的取值离开轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离