1 / 11
文档名称:

讲义02经典模型.doc

格式:doc   页数:11
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

讲义02经典模型.doc

上传人:中国课件站 2011/10/12 文件大小:0 KB

下载得到文件列表

讲义02经典模型.doc

文档介绍

文档介绍:第一章线性回归模型

有简单线性回归模型(统计模型)如下,
yt = b0 + b1 xt + ut
上式表示变量yt 和xt之间的真实关系。其中yt 称被解释变量(因变量),xt称解释变量(自变量),ut称随机误差项,b0称常数项,b1称回归系数(通常未知)。上模型可以分为两部分。(1)回归函数部分,E(yt) = b0 + b1 xt,(2)随机部分,ut 。
E(yt) = b0 + b1 xt ut
真实的回归直线
这种模型可以赋予各种实际意义,收入与支出的关系;如脉搏与血压的关系;商品价格与供给量的关系;文件容量与保存时间的关系;林区木材采伐量与木材剩余物的关系;身高与体重的关系等。
以收入与支出的关系为例。假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。但实际上数据来自各个家庭,来自各个不同收入水平,使其他条件不变成为不可能,所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。随机误差项ut中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。所以在经济问题上“控制其他因素不变”是不可能的。
回归模型的随机误差项中一般包括如下几项内容,(1)非重要解释变量的省略,(2)人的随机行为,(3)数学模型形式欠妥,(4)归并误差(粮食的归并)(5)测量误差等。
回归模型存在两个特点。(1)建立在某些假定条件不变前提下抽象出来的回归函数不能百分之百地再现所研究的经济过程。(2)也正是由于这些假定与抽象,才使我们能够透过复杂的经济现象,深刻认识到该经济过程的本质。
通常线性回归函数E(yt) = b0 + b1 xt 是观察不到的,利用样本得到的只是对E(yt) = b0 + b1 xt 的估计,即对b0和b1的估计。
在对回归函数进行估计之前应该对随机误差项ut做出如下假定。
(1) ut 是一个随机变量,ut 的取值服从概率分布。
(2) E(ut) = 0。
(3) D(ut) = E[ut - E(ut) ]2 = E(ut)2 = s 2。称ui 具有同方差性。
(4) ut 为正态分布(根据中心极限定理)。
以上四个假定可作如下表达。ut ~ N (0, s 2 )。
(5) Cov(ui, uj) = E[(ui - E(ui) ) ( uj - E(uj) )] = E(ui, uj) = 0, (i ¹ j )。含义是不同观测值所对应的随机项相互独立。称为ui 的非自相关性。
(6) xi是非随机的。
(7) Cov(ui, xi) = E[(ui - E(ui) ) (xi - E(xi) )] = E[ui (xi - E(xi) ] = E[ui xi - ui E(xi) ] = E(ui xi) = 0.
ui 与xi 相互独立。否则,分不清是谁对yt的贡献。
(8) 对于多元线性回归模型,解释变量之间不能完全相关或高度相关(非多重共线性)。
在假定(1),(2)成立条件下有E(yt) = E(b0 + b1 xt + ut ) = b0 + b1 xt 。
(OLS)
对于所研究的经济问题,通常真实的回归直线是观测不到的。收集样本的目的就是要对这条真实的回归直线做出估计。
怎样估计这条直线呢?显然综合起来看,这条直线处于样本数据的中心位置最合理。怎样用数学语言描述“处于样本数据的中心位置”?设估计的直线用
=+ xt
表示。其中称yt的拟合值,和分别是 b0 和b1的估计量。观测值到这条直线的纵向距离用表示,称为残差。
yt =+=+ xt +
称为估计的模型。(1)用“残差和最小”确定直线位置是一个途径。但很快发现计算“残差和”存在相互抵消的问题。(2)用“残差绝对值和最小”确定直线位置也是一个途径。但绝对值的计算比较麻烦。(3)最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。(这种方法对异常值非常敏感)设残差平方和用Q表示,
Q = = = ,
则通过Q最小确定这条直线,即确定和的估计值。以和为变量,把Q看作是和的函数,这是一个求极值的问题。求Q对和的偏导数,得正规方程,
= 2(-1) = 0
= 2(- xt) = 0
T + () =
+ () =
=
==
=
写成离差形式,
=
=

线性特性
这里指和分别是yt的线性函数。
= ==
令 kt = ,代入上式,得
= å kt yt
可见是yt的线性函数,

最近更新

2026年促销活动成功方案 20页

2026年促销方案活动主题圣诞 26页

2024年中山火炬职业技术学院单招职业倾向性测.. 41页

2024年中山职业技术学院单招职业技能考试题库.. 39页

2026年你就是新时代的好少年作文 7页

2024年临沂职业学院单招职业适应性测试模拟测.. 42页

2024年丽水职业技术学院单招职业倾向性考试题.. 40页

2024年义乌工商职业技术学院单招职业适应性考.. 40页

2024年乌海职业技术学院单招职业倾向性考试题.. 41页

2024年乐山职业技术学院单招职业倾向性测试题.. 40页

2024年九州职业技术学院单招职业适应性测试题.. 39页

2024年九江职业大学单招职业技能测试题库必考.. 41页

2026年作文童年的回忆 9页

2024年云南体育运动职业技术学院单招职业技能.. 41页

2024年云南国土资源职业学院单招职业适应性考.. 38页

2024年云南城市建设职业学院单招职业技能测试.. 41页

2026年作文快乐的春节550字 10页

2024年云南旅游职业学院单招职业适应性测试模.. 40页

2024年云南林业职业技术学院单招职业技能考试.. 41页

2026年作文大全三年级暑假生活 15页

2026年作文元旦联欢会好词好句 8页

2024年云南省楚雄彝族自治州单招职业倾向性测.. 42页

2024年云南省红河哈尼族彝族自治州单招职业适.. 41页

2024年云南经贸外事职业学院单招职业倾向性考.. 40页

2026年作文450字保护环境 12页

2024年仙桃职业学院单招职业技能测试模拟测试.. 40页

2025年广州卫生职业技术学院单招职业技能测试.. 64页

美团代运营业务委托合同 6页

九年级家长会课件PPT下载(初三2班) 25页

食品标签审核确认表 3页