文档介绍:习题12-4求下列微分方程的通解:⑴字+尸厂;ax解y=e~^dx(Je~x•^dxdx+C)= e~x•exdx+C)=e~A'(x+C).(2)寸+)=/+3乳+2;解原方程变为y+lv=x+3+^.Q Xy=e(兀+3+?)•丿兀dx+C]X=-[f(x+3+-)xd^+C]=-[f(x2+3兀+2)力+C]XJ X XJ=丄(驭+卓2+2兀+0=异+弓X+2+ 2 3 2x(3)y+ycos4戶匕解)=討3皿((。如力+0g-sinx("一血大/血山+c)=£-sinx(兀+c).(4)/+jtanKsin2x;解y=*伽皿(卜山2心伽皿力+C)^incosx/sin2x^-,nc0SV6Zx+C)cosx((2sinxcos兀•一-—dx-\-C)J cos兀=cosx(-2cosx+C)=Ccosx-2cos2x•(5)(x2-1)y+2xy-cosx=0;解原方程变形为y+壬尸竽斗.]・xL-\cosx1f .(x2-lkZr+CJ=(sinx+C).x—1Jx—1 x—1(略+3尸2;解°之一国冷2』叫&+C)=0-%(j2/d0+C)+c)=^+c严=严(討(7)子+2xy=4x;解)=£叩皿("兀』2皿么+c)=e~x2(J4r/必+C)二£一*(2討+C)=2+Cw—W.(8)ylnydx+(x-\ny)d)=°;解原方程变形为半+J—兀=丄・ayylnyyx=/fe<v([丄』而dy+C)Jy=M(Hln^+C)=M(2ln2y+C)=2Inj+M-⑼(兀-2)字=y+2(兀-2尸;dx解原方程变形为字—一)=2(无—=J%一2"]J2(%-2)%=(x-2)[J2(x-2)2•古心+C]=(x-2)[(x-2)24-Q=(x-2)3+C(x-2).(10)(y2-6x)-^-+2y=-2丄dr-2Clx+C]解原方程变形为半兀二-£儿dyy 2•x=e於[卜訥•卅%+C]=yX-^\y^dy^c)=讯(古+c)=*y2+cy3求下列微分方程满足所给初始条件的特解:dy(l)-r-ytanx=secx,}?L-o=O;-Itanxdr> ,厂、JOY+C)ax解y=Jlanxdx(jsecx-^=—!—(fsecacosxdx-\-C)=—-—(x+C).cosxJ cosx由)lz=0,得C=0,故所求特解为尸xsecx•⑵字+红沁』“1;axxx, -f丄厶f解y-e儿(^/y+c)=丄(-cosx+C).X X由刘冃汙1,得C=7T-\,故所求特解为歹=丄(龙-1-C0S尢).・ X⑶^4-ycotx=5ecosv,儿—龙=一4;+C)=J—(-5严尤+c).sinx由刘厂一4,得C=l,故所求特解为y=J-(—5严s“+i).x=* 「sinx⑷字+3)=8,=o=2;ax解尸*M(j8』%+c)=严(8JR仏+C)=£-3吟3x+C)=£+C£-3x由y|*2,得C"#,故所求特解为y=j(4-e~3x).(5)字+2_尹y=l,yL=i=[2-3x2> 『2-3戏解y=j* (J].<x3dx^-C)=x^ex2 /力+C)=X討(壮*+C).X /由yla=0,得C=—亠,故所求特解为丁=:兀3(1一云厂1).2e • 2求一