文档介绍:第 24 卷第 2 期经济数学 V ol24 N o 2
2 007 年 6 月 M A T H E M A T IC I E C O N O M IC S 20 0 7
期权定价的局部线性预测法
吴金奇,金朝高
(重庆大学数理学院,重庆,400044)
摘要在为期权定价时,使用B - S ,给出
了一种新的期权定价数值方法,
证,表明这一方法是有效的.
关键词 B 一S公式,局线性性预测
中图分类号 文献标识码 A
1. 引言
期权定价是金融数学和计量经济学研究的主要问题之一,1973 年,Black 一Scholes期权定
,在市场交易中,B 一S 公式并不能总是
B 一S 公式的定价也不是差的离谱,完全抛弃有三十多年历史
的B - S ,可以想象 B - S 公式在期权定价中占主要部分,而剩下部分
是因B 一S 公式的基本假设与市场实际情况偏差而作的修正或补充,我们对这一部分进行线
性预测.
经典的定价模式,[[ 2l:
了, , 、
口,
‘ l . .
、 1 了
In黑一,(。(:一:),62(T一:)). . 廿
口、乙,
其中活T)表示期权到期日T 时刻的股票价格,S(t)表示当前时刻t的股票价格,。表示波动
一S公式[[ 21:
CBS = S(t)N (d,) 一X exp(一r(T 一t))N (d2). ()
其中。二表示由B 一S 公式得到的期权价格,N (妇表示标准正态分布的分布函数,d,二
S O ) , 。62、
i-骡华型,d2=d,一。勺万几,X 为敲定价格,:表示无风险收益率.
a V 卫一‘
2. 局部线性预测
市场交易价格。。和B 一S 公式的定价。二总有相差,设 e 为相差部分,则可以表示为:
c。= CRs + e , (2 .1)
收稿日期:2006- 10 - 09
万方数据
第 2 期吴金奇金朝篙:期权定价的局部线性预测法 15 9
假定。满足线性模型[3]:
e = 91,+ (3(T 一t) + 。,。一N (062) ()
要建立线性预测模型, n(n > 2)次独立观测得到 n
组数据:(T 一t;,。‘),i= 1,2,⋯,n,满足(),有
十
己一
1一几+ 91(T 一t,)+ 。,,
己
l , 一-
‘风+ 91(T 一t2) + E2,
l (2 .3)
w e
.
.
、 C 一
几风+ 91(T 一to)+ 。。.
其中,。,,⋯,。。相互独立且服从N (0,
2 、、
子 e l 奋十
l ‘ 1
l e s T 一风
s e e s
E e s e s 口
一 s. e e s . . 一
-