文档介绍:--------------------------校验:_____________-----------------------日期:_____________电磁感应中的单双杆模型电磁感应中的单双杆问题单杆问题与动力学相结合的问题1、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接一电动势为E,内阻为r的电源,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度?2、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接一电阻为R,MN在恒力F的作用下从静止开始运动,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度?3、金属导轨左端接电容器,电容为C,轨道上静止一长度为L的金属棒cd,整个装置处于垂直纸面磁感应强度为B的匀强磁场当中,现在给金属棒一初速度v,试求金属棒的最大速度?与能量相结合的题型倾斜轨道与水平面夹角为,整个装置处于与轨道相垂直的匀强磁场当中,导轨顶端连有一电阻R,金属杆的电阻也为R其他电阻可忽略,让金属杆由静止释放,经过一段时间后达到最大速度,且在此过程中电阻上生成的热量为。求:(1)金属杆达到最大速度时安培力的大小(2)磁感应强度B为多少(3)求从静止开始到达到最大速度杆下落的高度2.(20分) 如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,两平行轨道中够长。已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2。(1)求导体棒ab从A下落r/2时的加速度大小。(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和R2上的电功率P2。(3)当导体棒进入磁场II时,施加一竖直向上的恒定外力F=mg的作用,求导体棒ab从开始进入磁场II到停止运动所通过的距离和电阻R2上所产生的热量。双杆问题(一)、同一磁场中的等宽轨道1、水平放置的光滑金属轨道上静止两根质量为m的金属棒MN、PQ。电阻均为R,现给PQ一个向右的初速度,其他部分及连接处电阻不计,试求:(1)金属棒MN在轨道上的最大速度?(2)回路中产生的最大热量(二)、同一磁场不等宽轨道如图所示,光滑、足够长、不计电阻、轨道处在磁感应强度为B的匀强磁场当中,间距左边为l,右边为2l的平行金属导轨上静止M、N两根同样粗细的同种金属棒,除金属棒上电阻为R、2R外,其他电阻均不计。现给N棒一根瞬时冲量I(1)求金属棒N受到冲量后的瞬间通过金属导轨的感应电流(2)设金属棒N在运动到宽轨道前M已经达到最大速度,求金属棒M的最大速度值;(3)金属棒N进入Ⅱ宽轨道区后,金属棒MN再次达到匀速运动状态,。求整个过程中金属棒MN中产生的总焦耳热。(三)、不同磁场区域的平行轨道1、(20分)如图13所示,光滑、足够长、不计电阻、轨道间距为l的平行金属导轨MN、PQ,水平放在竖直向下的磁感应强度不同的两个相邻的匀强磁场中,左半部分为Ι匀强磁场区,磁感应强度为B1;