文档介绍:抽样定理及应用
课程设计的目的
1. 掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。
2. 掌握利用MATLAB实现连续信号采用与重构的方法,加深理解采样与重构的概念。
3. 学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。
4. 加深理解采样对信号的时域和频域特性的影响;验证信号与系统的基本概念、基本理论,掌握信号与系统的分析方法。
5. 加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样与重构的方法。
二. 课程设计的内容及要求
离散正弦序列的MATLAB表示与连续信号类似,只不过是用stem函数而不是用plot函数来画出序列波形。
由于函数不是严格的带限信号,其带宽可根据一定的精度要求做一近似。根据以下三种情况用MATLAB实现采样信号及重构并求出两者误差,分析三种情况下的结果。
(1)的临界采样及重构:,,;
(2)的过采样及重构:,,;
(3)的欠采样及重构:,,。
模拟信号经过(A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。时域采样定理从采样信号恢复原信号必需满足两个条件:
(1) 必须是带限信号,其频谱函数在> 各处为零;(对信号的要求,即只有带限信号才能适用采样定理。)
 (2) 取样频率不能过低,必须>2 (或>2)。(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号。
设信号被采样后形成的采样信号为,信号的重构是指由经过内插处理后,恢复出原来信号的过程。又称为信号恢复。
连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。严格来说,MATLAB并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。时域对连续时间信号进行采样,是给它乘以一个采样脉冲序列,就可以得到采样点上的样本值,信号被采样前后在频域的变化,可以通过时域频域的对应关系分别求得了采样信号的频谱。
在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值来表示,并且可以用这些样本值把信号完全恢复过来。这样,采样定理为连续时间信号与离散时间信号的相互转换提供了理论依据。通过观察采样信号的频谱,发现它只是原信号频谱的线性重复搬移,只要给它乘以一个门函数,就可以在频域恢复原信号的频谱,在时域是否也能恢复原信号时,利用频域时域的对称关系,得到了信号。
当采样频率小于一个连续的同信号最大频率的2倍,即时,称为临界采样. 修改门信号宽度、采样周期等参数