1 / 8
文档名称:

沙漏控制.docx

格式:docx   大小:22KB   页数:8页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

沙漏控制.docx

上传人:guoxiachuanyue006 2020/9/18 文件大小:22 KB

下载得到文件列表

沙漏控制.docx

文档介绍

文档介绍:沙漏控制A1有限元方法一般以节点的位移作为基本变量,单元内各点的位移以及应变均采用形函数对各节点的位移进行插值计算而得, 应力根据本构方程由应变计算得到,然后就可以计算单元的内能了。如果采用单点积分(积分点在等参元中心) ,在某些情况下节点位移不为零(即单元有形变),但插值计算得到的应变却为零(譬如一个正方形单元变形为一个等腰梯形,节点位移相等但符号相反,各形函数相同,所以插值结果为0),这样内能计算出来为零(单元没变形!)。这种情况下,一对单元叠在一起有点像沙漏,所以这种模式称之为沙漏模式或沙漏。现在有很多控制沙漏的专门程序,如控制基于单元边界的相对转动。但这些方法不能保持完备性。:我主要讲一下物理的稳定性,在假设应变方法的基础上,建立沙漏稳定性的过程。在这些过程中,稳定性参数基于材料的性能。这类稳定性也称为物理沙漏控制。对于不可压缩材料,即使当稳定性参数是一阶的时候,这些稳定性方法也将没有自锁。在建立物理沙漏控制中,必须做出两个假设:1在单元内旋转是常数。。A2沙漏(hourglass)模式是一种非物理的零能变形模式,产生零应变和应力。沙漏模式仅发生在减缩积分(单积分点)体、壳和厚壳单元上。LS-DYNA里面有多种算法用于抑制沙漏模式。缺省的算法(type1)通常不是最有效的算法,但却是最经济的。一种完全消除沙漏的方法是转换到全积分或者选择减缩积分 (S/R)方程的单元。但这种方法是一种下策。例如,第一,类型2体单元比缺省的单点积分体单元计算开消大其二,在大变形应用时更不稳定(更容易出现负体积);其三,类型2体单元当单元形状比较差时在一些应用中会趋向于剪切锁死(shear-lock),因而表现得过于刚硬。三角形壳和四面体单元没有沙漏模式, 但缺点是在许多应用中被认为过于刚硬。 减小沙漏的一个好的方法是细化网格, 但这当然并不总是现实的。加载方式会影响沙漏程度。施加压力载荷优于在单点上加载,因为后者更容易激起沙漏模式。为了评估沙漏能,在*control_energy卡片中设置HGEN=2,而且用*database_glstat和*database_matsum卡分别输出系统和每一个部件的沙漏能。这一点是要确认非物理的沙漏能相对于每一个part的峰值内能要小(经验上来说<10%。对于壳单元,可以绘制出沙漏能密度云图,但事先在*database_extent_binary卡中设置SHGE=2然后在LS-p>Misc>hourglassenergy。对于流体部件,缺省的沙漏系数通常是不合适的(太高)。因此对于流体,沙漏系数通常要缩小一到两个数量级。对流体用基于粘性的沙漏控制。缺省的沙漏方程 (type1)对流体通常是可以的。对于结构部件一般来说基于刚性的沙漏控制(type4,5)比粘性沙漏控制更有效。通常,当使用刚性沙漏控制时****惯于减小沙漏系数到 ~,这样最小化非物理的硬化响应同时又有效抑制沙漏模式。 对于高速冲击,即使对于固体结构部件,推荐采用基于粘性的沙漏控制(type1,2,3)。粘性沙漏控制仅仅是抑制沙漏模式的进一步发展,刚性沙漏控制将使单元朝未变形的方向变形。类型8沙漏控制仅用于单元类型16的壳。这种沙漏类型激活了16号壳的翘曲刚度,因此单元的翘曲不会使解退化。如果使用沙漏控制8,16号壳单元