文档介绍:基于高速动车组重联网络控制系统时延的研究
该论文来源于网络,本站转载的论文均是优质论文,供学习和研究使用,文中立场与本网站无关,版权和著作权归原作者所有,如有不愿意被转载的情况,请通知我们删除已转载的信息,如果需要分享,请保留本段说明。
摘 要:文章首先建立高速动车组重联网络控制系统模型并分析前向通道与反向通道时延,基于BP神经网络递推预测的方法对网络控制系统未来的输出进行预测。然后提出一种快速隐式广义预测控制算法(IGPC)对预测的时延进行补偿,IGPC算法的原理是根据系统输入与输出数据,并利用广义预测控制(Generalized Predictive Control,GPC)算法与动态矩阵控制律(DMC)的等价性,直接求解最优控制律。IGPC算法比GPC算法的计算量更小且效率更高,既能节省时间成本又能保证高速动车组网络控制的实时性。最后将BP神经网络递推预测的方法与IGPC、GPC结合起来,分别采用无时延补偿基于BP神经网络预测的GPC算法、有时延补偿基于BP神经网络预测的GPC算法及有时延补偿基于BP神经网络预测的IGPC算法进行实验仿真,实验结果表明:相比较于其它两种算法,有时延补偿基于BP神经网络预测的IGPC算法可较好地跟踪标准参考方波,在初始阶段的震荡时间最短且超调量也最小。故有时延补偿基于BP神经网络预测的IGPC算法为最优算法。
关键词:高速动车组;BP神经网络;IGPC算法;GPC算法;时延
中图分类号:TP183 文献标志码:A 文章编号:2095-2945(2020)23-0021-04
Abstract: In this paper, the reconnection network control system model of high-speed emu is firstly established and the time delay of forward channel and reverse channel is analyzed. The future output of the network control system is predicted based on the method of BP neural network recursion prediction. Then, a fast implicit generalized predictive control(IGPC) algorithm is proposed tocompensate the time delay of prediction. The principle of IGPC algorithm is based on the input and output data of the system, and the equivalence between generalized predictive control(GPC) algorithm and dynamic matrix control(DMC) law is used to directly