文档介绍:三角函数的题型和方法
一、思想方法
1、三角函数恒等变形的基本策略。
(1)常值代换:特别是用“1”的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。
(2)项的分拆与角的配凑。如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β=-等。
(3)降次与升次。即倍角公式降次与半角公式升次。
(4)化弦(切)法。将三角函数利用同角三角函数基本关系化成弦(切)。
(5)引入辅助角。asinθ+bcosθ=sin(θ+),这里辅助角所在象限由a、b的符号确定,角的值由tan=确定。
(6)万能代换法。巧用万能公式可将三角函数化成tan的有理式。
2、证明三角等式的思路和方法。
(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。
(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。
3、证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。
4、解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
二、注意事项
对于三角函数进行恒等变形,是三角知识的综合应用,其题目类型多样,变化似乎复杂,处理这类问题,注意以下几个方面:
1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。
2、三角变换的一般思维与常用方法。
注意角的关系的研究,既注意到和、差、倍、半的相对性,如
.也要注意题目中所给的各角之间的关系。
注意函数关系,尽量异名化同名、异角化同角,如切割化弦,互余互化,常数代换等。
熟悉常数“1”的各种三角代换:
等。
注意万能公式的利弊:它可将各三角函数都化为的代数式,把三角式转化为代数式.但往往代数运算比较繁。
熟悉公式的各种变形及公式的范围,如
sin α = tan α· cos α,,等。
利用倍角公式或半角公式,可对三角式中某些项进行升降幂处理,如,,等.从右到左为升幂,这种变形有利用根式的化简或通分、约分;从左到右是降幂,有利于加、减运算或积和(差)互化。
3、几个重要的三角变换:
sin α cos α可凑倍角公式; 1±cos α可用升次公式;
1±sin α 可化为,再用升次公式;
(其中 )这一公式应用广泛,熟练掌握。
4、单位圆中的三角函数线是三角函数值的几何表示,四种三角函数y = sinx、y = cosx、y = tanx、y =cotx的图像都是“平移”单位圆中的三角函数线得到的,因此应熟练掌握三角函数线并能应用它解决一些相关问题.
5、三角函数的图像的掌握体现在:把握图像的主要特征(顶点、零点、中心、对称轴、单调性、渐近线等);应当熟练掌握用“五点法”作图的基本原理以及快速、准确地作图。
6、三角函数的奇偶性结论:
① 函数y = sin(x+φ)是奇函数。
② 函数y = sin(x+φ)是偶函数。
③ 函数y =cos (x+φ)是奇函数。
④函数y = cos(x+φ)是偶函数。
7、三角函数的单调性
三、典型例题与方法
题型一 三角函数的概念及同角关系式
。
1、三角函数的六边形法则。
2、几个常用关系式:
(1)sinα﹢cosα,sinα﹣cosα,sinα·cosα,三式知一求二。
(2)。
(3)当时,有。
3、诱导公式(奇变偶不变,符号看象限)。
4、sin(kπ﹢α)=﹣1ksinα;coskπ﹢α=﹣1kcosα,(k∈Z)。
5、熟记关系式;。
【例1】记,那么( )
A、B、﹣C、D、﹣
解:,
。故选B
评注:本小题主要考查诱导公式、同角三角函数关系式,并突出了弦切互化这一转化思想的应用。同时熟练掌握三角函数在各象限的符号。
【例2】( )
A、 B、-C、D、
解:
评注:本小题主要考查诱导公式、特殊三角函数值等三角函数知识。
练习:
1、sin585°的值为( )
A、 B、 C、 D、
2、下列关系式中正确的是( )
A、 B、
C、 D、
3、若,则.
4、 “”是“”的( )