1 / 37
文档名称:

第八章 预测分析.doc

格式:doc   页数:37页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

第八章 预测分析.doc

上传人:Hkatfwsx 2014/8/9 文件大小:0 KB

下载得到文件列表

第八章 预测分析.doc

文档介绍

文档介绍:第八章预测分析
第八章预测分析
[本章提要]本章首先讨论了两种时间序列预测法:移动平均法和指数平滑法。然后介绍了回归分析法,其中包括线性回归法和可以转化为线性处理的非线性回归。预测是指从已知事件测定未知事件。具体地讲,预测就是以准确的调查统计资料和统计数据为依据,从研究现象的历史、现状和规律性出发,运用科学的方法,对研究现象的未来发展前景的测定。预测理论作为通用的方法论,既可以应用于研究自然现象,又可应用于研究社会现象。将预测理论、方法和个别领域现象发展的实际相结合,就产生了预测的各个分支。如社会预测、人口预测、经济预测、政治预测、科技预测、军事预测、气象预测等等。本章主要以经济预测为例来讨论预测技术中最基本、最常用的预测方法及其在Excel 2000中的具体实现。经济预测的内容十分丰富,常见如某种商品或产品的社会需求预测、市场占有率预测、市场供求预测、库存预测以及企业利润预测、投资效益预测、价格变动预测等等。由于经济系统的复杂性、随机性、动态性、开放性、模糊性以及经济信息的不完善性,使得没有哪种单纯的预测方法能满足一切预测决策工作的需要,所以现在已发展了许多预测方法,不同的预测方法适用于不同的情况。在实际应用中应具体问题具体分析,针对具体问题选择最有效的预测方法来进行预测分析。本章只讨论应用最为广泛的两种时间序列预测法和回归分析预测法。
83>.1 时间序列预测法
时间序列是指把历史统计资料按时间顺序排列起来得到的一组数据序列。例如,按月份排列的某种商品的销售量;工农业总产值按年度顺序排列起来的数据序列等等都是时间序列。时间序列一般用
移动平均法
移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。 1. 移动平均法的基本理论①简单移动平均法设有一时间序列,则按数据点的顺序逐点推移求出N个数的平均数,即可得到一次移动平均数: 式中为第t周期的一次移动平均数; 为第t周期的观测值;N为移动平均的项数,即求每一移动平均数使用的观察值的个数。这个公式表明当t向前移动一个时期,就增加一个新近数据,去掉一个远期数据,得到一个新的平均数。由于它不断地“吐故纳新”,逐期向前移动,所以称为移动平均法。由于移动平均可以平滑数据,消除周期变动和不规则变动的影响,使得长期趋势显示出来,因而可以用于预测。其预测公式为: 即以第t周期的一次移动平均数作为第t+1周期的预测值。②趋势移动平均法当时间序列没有明显的趋势变动时,使用一次移动平均就能够准确地反映实际情况,直接用第t周期的一次移动平均数就可预测第t+1周期之值。但当时间序列出现线性变动趋势时,用一次移动平均数来预测就会出现滞后偏差。因此,需要进行修正,修正的方法是在一次移动平均的基础上再做二次移动平均,利用移动平均滞后偏差的规律找出曲线的发展方向和发展趋势,然后才建立直线趋势的预测模型。故称为趋势移动平均法。设一次移动平均数为,则二次移动平均数的计算公式为: 再设时间序列从某时期开始具有直线趋势,且认为未来时期亦按此直线趋势变化,则可设此直线趋势预测模型为: 式中t为当前时期数;T为由当前时期数t到预测期的时期数,即t以后模型外推的时间; 为第t+T期的预测值; 为截距; 为斜率。, 又称为平滑系数。根据移动平均值可得截距和斜率的计算公式为: 在实际应用移动平均法时,移动平均项数N的选择十分关键,它取决于预测目标和实际数据的变化规律。 2. 应用举例已知某商场1978~1998年的年销售额如下表所示,试预测1999年该商场的年销售额。
年份
销售额
年份
销售额
1978
32
1989
76
1979
41
1990
73
1980
48
1991
79
1981
53
1992
84
1982
51
1993
86
1983
58
1994
87
1984
57
1995
92
1985
64
1996
95
1986
69
1997
101
1987
67
1998
107
1988
69


下面使用移动平均工具进行预测,具体操作步骤如下: 选择工具菜单中的数据分析命令,此时弹出数据分析对话框。在分析