1 / 83
文档名称:

紫外可见分光光度法.ppt

格式:ppt   大小:8,211KB   页数:83页
下载后只包含 1 个 PPT 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

紫外可见分光光度法.ppt

上传人:文库新人 2021/9/10 文件大小:8.02 MB

下载得到文件列表

紫外可见分光光度法.ppt

相关文档

文档介绍

文档介绍:紫外可见分光光度法
研究物质在 紫外、可见光区 的分子吸收光谱 的分析方法称为紫外—可见分光光度法。
紫外—可见分光光度法是利用某些物质的分子吸收190 ~ 750 nm的辐射来进行分析测定的方法。
这种分子吸收光谱产生于价电子和分子轨道上的电子 在电子能级间的跃迁,广泛用于无机和有机物质的定性和定量测定。
*
一、分子吸收光谱的产生
在分子中,除了电子相对于原子核的运动外,还有核间相对位移引起的振动和转动。这三种运动能量都是量子化的,并对应有一定能级。
下图为分子的能级示意图。
E分子= E电子 + E振动+ E转动
*
3-1 分子吸收光谱
图3-1:双原子分子的三种能级跃迁示意图(实际上电子能级间隔要比图示大得多,转动能级间隔要比图示小得多)
*
图中A和B表示不同能量的电子能级。在每一电子能级上有许多间距较小的振动能级,在每一振动能级上又有许多更小的转动能级。
若用△E电子、 △ E振动、 △ E转动分别表示电子能级、振动能级转动能级差,即有△ E电子 △ E振动 △ E转动。处在同一电子能级的分子,可能因其振动能量不同,而处在不同的振动能级上。当分子处在同一电子能级和同一振动能级时,它的能量还会因转动能量不同,而处在不同的转动能级上。所以分子的总能量可以认为是这三种能量的总和: E分子 = E电子 + E振动 + E转动
*
3-1 分子吸收光谱
当用频率为的电磁波照射分子,而该分子的较高能级与较低能级之差△ E恰好等于该电磁波的能量 h时,即有
△ E = h ( h为普朗克常数)
此时,在微观上出现分子由较低的能级跃迁到较高的能级;在宏观上则透射光的强度变小。
若用一连续辐射的电磁波照射分子,将照射前后光强度的变化转变为电信号,并记录下来,然后以波长为横坐标,以电信号(吸光度 A)为纵坐标,就可以得到一张光强度变化对波长的关系曲线图——分子吸收光谱图。
*
3-1 分子吸收光谱
二、分子吸收光谱类型
根据吸收电磁波的范围不同,可将分子吸收光谱分为远红外光谱、红外光谱及紫外、可见光谱三类。
~ 。产生此能级的跃迁,需吸收波长约为250 ~ 25m的远红外光,因此,形成的光谱称为转动光谱或远红外光谱。
~ 1 eV,需吸收波长约为25 ~ m的红外光才能产生跃迁。在分子振动时同时有分子的转动运动。这样,分子振动产生的吸收光谱中,包括转动光谱,故常称为振-转光谱。由于它吸收的能量处于红外光区,故又称红外光谱。
*
3-1 分子吸收光谱
电子的跃迁能差约为1 ~ 20 eV,比分子振动能级差要大几十倍, ~ m,主要在真空紫外到可见光区,对应形成的光谱,称为电子光谱或紫外、可见吸收光谱。
通常,分子是处在基态振动能级上。当用紫外、可见光照射分子时,电子可以从基态激发到激发态的任一振动(或不同的转动)能级上。因此,电子能级跃迁产生的吸收光谱,包括了大量谱线,并由于这些谱线的重叠而成为连续的吸收带,这就是为什么分子的紫外、可见光谱不是线状光谱,而是带状光谱的原因。
*
3-1 分子吸收光谱
又因为绝大多数的分子光谱分析,都是用液体样品,加之仪器的分辨率有限,因而使记录所得电子光谱的谱带变宽。
由于氧、氮、二氧化碳、水等在真空紫外区(60 ~ 200 nm)均有吸收,因此在测定这一范围的光谱时,必须将光学系统抽成真空,然后充以一些惰性气体,如氦、氖、氩等。鉴于真空紫外吸收光谱的研究需要昂贵的真空紫外分光光度计,故在实际应用中受到一定的限制。我们通常所说的紫外—可见分光光度法,实际上是指近紫外、可见分光光度法。
*
3-1 分子吸收光谱
*
不同波长范围的电磁波所能激发的分子和原子的运动情况如表3-1所示。
表3-1:电磁波谱