文档介绍:图形与几何手抄报
篇一:数学手抄报素材
数学手抄报素材
勾股定理
勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解
决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特
例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦
222五”是勾股定理最基本的公式。勾股数组方程a+b=c的正整数组(a,b,c)。(3,4,5)就
222是勾股数。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a+b=c。
蝴蝶定理
蝴蝶定理(Butterflytheorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和
BC各相交PQ于点X和Y,则M是XY的中点。该定理实际上是射影几何中一个定理的特殊情况,有多种推广:M,作为圆内弦是不必要的,可以移到圆外。圆可以改为任意圆锥曲线。
将圆变为一个完全四角形,M为对角线交点。去掉中点的条件,结论变为一个一般关于有向
线段的比例式,称为“坎迪定理”,不为中点时满足:,这对2,3均成立。
燕尾定理
燕尾定理:因此图类似燕尾而得名。是五大模型之一,是一个关于三角形的定理。
证法:利用分比性质。
塞瓦定理
使用塞瓦定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来进行三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的
作用。塞瓦定理的对偶定理是梅涅劳斯定理。
梅涅劳斯
梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指
出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么
(AF/FB)×(BD/DC)×(CE/EA)=1。或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1。
共边定理
有一条公共边的三角形叫做共边三角形。
几何课本里有相似三角形、全等三角形,但没有共边三角形。其实,共边三角形在几何图形
中出现的频率更多。比如,平面上随意取四个点A、B、C、D,这其中一般没有相似三角形,也没有全等三角形,但却有许多共边三角形。由此,我们说一下共边定理
共边定理:设直线AB与PQ交于点M,则S△PAB÷S△QAB=PM÷QM
证明:分如下四种情况,分别作三角形高,由相似三角形可证
篇二:数学手抄报资料7112675
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为
<π<,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈)密率22/7(≈),这两个数都是π的渐近分数。
数学的起源:数学是一门最古老的学科。远在1万5千年前人类就已经能相当逼真地描绘出人和动物的形象。这是萌发图形意识的最早证据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。在