文档介绍:数列求和常用方法
数列求和常用方法
数列求和常用方法
数列求和的常用方法
数列是高中数学的重要内容,又是学习高等数学的基础.在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.
下面,简单介绍下数列求和的基本方法和技巧.
第一类:公式法
利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、等差数列的前项和公式
2、等比数列的前项和公式
3、常用几个数列的求和公式
(1)、
(2)、
(3)、
第二类:乘公比错项相减(等差等比)
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列的前n项和,其中,分别是等差数列和等比数列。
例1:求数列(为常数)的前项和。
解:Ⅰ、若=0, 则=0
Ⅱ、若=1,则
Ⅲ、若≠0且≠1,
数列求和常用方法
数列求和常用方法
数列求和常用方法
则 ①
②
①式—②式:
综上所述:
解析:数列是由数列与对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行分类讨论,最后再综合成三种情况.
第三类:裂项相消法
这是分解与组合思想在数列求和中的具体应用。
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项)如:
1、乘积形式,如:
(1)、
(2)、
(3)、
数列求和常用方法
数列求和常用方法
数列求和常用方法
(4)、
2、根式形式,如:
例2:求数列,,,…,,…的前项和
解:∵=
例3:求数列,,,…,,…的前项和
解:由于:=)
则:
解析:要先观察通项类型,在裂项求和时候,尤其要注意:究竟是像例2一样剩下首尾两项,还是像例3一样剩下四项。
第四类:倒序相加法
这是推导等差数列的前项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到个.
例4:若函数对任意都有。
(1),数列是等差数列吗?是证明你的结论;
数列求和常用方法
数列求和常用方法
数列求和常用方法
(2)求数列的的前项和.
解:(1)、(倒序相加)
则,由条件:对任意都有。
从而:数列是的等差数列。
(2)、
=
=
故:=
解析:此类型关键是抓住数列中与首末两端等距离的两项之和相等这一特点来进行倒序相加的。
此例题不仅利用了倒序相加法,,要学会灵活应用不同的方法加以求解.
第五类:分组求和法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。
例5:求数列{+}的前项和
解:令
数列求和常用方法
数列求和常用方法
数列求和常用方法
令 ①
②
①式-②式:
故:
例6:求数列{}的前项和
分析:将用完全平方和公式