文档介绍:word
word
1 / 23
word
小学数学教学论文:培养学生解答应用题的能力
    应用题在小学数学中占有很大的比例,所涉与的面也很广。解答应用题既要综合运用小学数学中的概念、性质、法如此、公式等根底知识,还要具有分析、综合、判断、推理的能力。所以,应用题教学不仅可以巩固根底知识,而且有助于培养学生初步的逻辑思维能力。
    怎样培养学生解答应用题的能力呢?下面谈谈自己的体会。
    一、结实地掌握根本的数量关系
    是解答应用题的根底
    应用题的特点是用语言或文字表示日常生活和生产中一件完整的事情,由条件和问题两局部组成,其中涉与到一些数量关系。解答应用题的过程就是分析数量之间的关系,进展推理,由求得未知的过程。学生解答应用题时,只有对题目中的数量之间的关系一清二楚,才有可能把题目正确地解答出来。换一个角度来说,如果学生对题目中的某一种数量关系不够清楚,那么也不可能把题目正确地解答出来。因此,结实地掌握根本的数量关系是解答应用题的根底。
    什么是根本的数量关系呢?根据加法、减法、乘法、除法的意义决定了加、减、乘、除法的应用围,应用围里涉与到的容就是根本的数量关系。例如:加法的应用围是:求两个数的和用加法计算;求比一个数多几的数用加法计算。这两个问题就是加法中的根本数量关系。
    怎样使学生掌握好根本的数量关系呢?
    首先要加强概念、性质、法如此、公式等根底知识的教学。举例来说,如果学生对乘法的意义不够理解,那么在掌握“单价×数量=总价〞这个数量关系式时就有困难。
word
word
2 / 23
word
    其次,根本的数量关系往往是通过一步应用题的教学来完成的。人们常说,一步应用题是根底,道理也就在于此。研究怎样使学生掌握好根本的数量关系,就要注重对一步应用题教学的研究。学生学习一步应用题是在低、中年级,这时学生年龄小,他们容易承受直观的东西,而不容易承受抽象的东西。所以在教学中,教师要充分运用直观教学,通过学生动手、动口、动脑,在获得大量感性知识的根底上,再通过抽象、概括上升到理性认识。下面以建立有关倍的数量关系为例来说明。
    两个数量相比,既可以比拟数量的多少,也可以比拟数量间的倍数关系。这就是说,“倍〞也是在比拟中产生的。在教有关“倍〞的数量关系时,核心问题是对“倍〞的认识。为了使学生理解“倍〞的意义,教学中可以这样进展:
    第一步从同样多入手。教师在第一行摆了2个△,第二行摆了2个○,启发学生说出○与△的个数同样多。
    第二步引出差,使差与比的标准同样多。接着教师在第二行再摆上1个○,这时○比△多1个。然后在第二行再摆上1个○,使学生说出○比△多2个;再引导学生通过观察得出:○比△多的局部与△的个数同样多。
    第三步从份数入手建立“倍〞的概念。接上面,如果把2个△看作1份,○有这样的几份呢?○有这样的2份,我们就说○的个数是△个数的2倍。
    把“倍〞的概念理解透了,那么教有关“倍〞的数量关系时就比拟容易了。例如教“求一个数的几倍是多少〞这种数量关系时,可以使用下面这样的应用题:
    有3只黑兔,白兔的只数是黑兔的4倍,白兔有几只?
word
word
3 / 23
word
    在这道简单应用题中,“白兔的只数是黑兔的4倍〞这个条件是关键。通过教具演示和学生动手操作,学生清楚地知道这句话的含意是:把3只黑兔看作1份,白兔有这样的4份。求3只的4倍是多少,就是求4个3只是多少。用乘法计算列式是:3×4=12〔只〕。从而使学生掌握“求一个数的几倍是多少〞,用乘法计算。
    如果在建立每一种数量关系时,都能使学生透彻地理解,结实地掌握,那么就为多步应用题的教学打下良好的根底。
    此外,人们在工作和学习中,把一些常见的数量关系概括成关系式,如:单价×数量=总价、速度×时间=路程、工作效率×工作时间=工作总量、亩产量×亩数=总产量,应使学生在理解的根底上熟记,这对学生掌握数量关系与寻找应用题的解题线索都是有好处的。
    再有,对一些名词术语的含意也要使学生很好地掌握。如:和、差、积、商的意义,提高、提高到、提高了、增加、减少、扩大、缩小等的意义。否如此会在分析数量关系时造成错误。
二、掌握应用题的分析方法
    是解答应用题的关键
    学生掌握了根本的数量关系后,能否顺利地解答应用题,关键在于是否掌握了分析应用题的方法。可以这样说,应用题教学成败的标志也在于此。
    〔一〕常用的分析方法
    分析应用题常用的方法是综合法和分析法。
   
word
word
4 / 23
word
    综合法的解题思路是由条件出