文档介绍:控制图的基本原理
质量特性数据具有波动性,在没有进行观察或测量时,一般是未知的,但其又具有规律性,它是在一定的范围内波动的,所以它是随机变量。
一、正态分布
如果随机变量受大量独立的偶然因素影响,而每一种因素的作用又均匀而微小,即没有一项因素起特别突出的影响,则随机变量将服从正态分布。
正态分布是连续型随机变量最常见的一种分布。它是由高斯从误差研究中得出的一种分布,所以也称高斯分布。随机变量服从正态分布的例子很多。一般来说,在生产条件不变的前提下,产品的许多量度,如零件的尺寸、材料的抗拉强度、疲劳强度、邮件的内部处理时长、随机测量误差等等都是如此。
定义若随机变量的概率密度函数为:
则称的分布为正态分布,记为。
正态分布的概率密度函数如图5—1所示。
图5-l 正态分布概率密度曲线
从图中我们叫以看出正态分布有如下性质:
(1)曲线是对称的,对称轴是x=μ;
(2)曲线是单峰函数,当x=μ时取得最大值;
(3)当曲时,曲线以x轴为渐近线;
(4)在处,为正态分布曲线的拐点;
(5)曲线与x轴围成的面积为1。
另外,正态分布的数字特征值为:
平均值
标准偏差
数字特征值的意义:平均值μ规定了图形所在的位置。根据正态分布的性质,在x=μ处,曲线左右对称且为其峰值点。
标准偏差,规定了图形的形状。图5-2给出了3个不同的值时正态分布密度曲线。当小时,各数据较多地集中于μ值附近,曲线就较“高”和“瘦”;当大时,数据向μ值附近集中的程度就差,曲线的形状就比较“矮”和“胖”。这说明正态分布的形状由的大小来决定。在质量管理中,反映了质量的好坏,越小,质量的一致性越好。
图5-2 大小不同时的正态分布
在正态分布概率密度函数曲线下,介于坐标,,,间的面积,%,%,%%。它们相应的几何意义如图5-3听示。
图5-3 各种概率分布的几何意义
二、控制图的轮廓线
控制图是画有控制界限的一种图表。如图5-4所示。通过它可以看出质量变动的情况及趋势,以便找出影响质量变动的原因,然后予以解决。
图5-4 控制图
我们已经知道:在正态分布的基本性质中,质量特性数据落在[μ±3]%,%,%,这是一个小概率事件。这个结论非常重要,控制图正是基于这个结论而产生出来的。
现在把带有μ±3线的正态分布曲线旋转到一定的位置(即正态分布曲线向右旋转9,再翻转),即得到了控制图的基本形式,再去掉正态分布的概率密度曲线,就得到了控制图的轮廓线,其演变过程如图5-5所示。
图5—5 控制图轮廓线的演变过程
通常,我们把上临界线(图中的μ+3线)称为控制上界,记为UCL(Upper Control Limit),平均数(图中的μ线)称为中心线,记为CL (Central Line),下临界线(图中μ-3线)称为控制下界,记为LCL(Lower Control Limit)。控制上界与控制下界统称为控制界限。按规定抽取的样本值用点子按时间或批号顺序标在控制图中,称为描点或打点。各个点子之间用实线段连接起来,以便看出生产过程的变化趋势。若点子超出控制界限,我们认为生产过程有变化,就要告警。
三、两种错