文档介绍:2. 定性方法
标准光谱比较法:
最常用的方法,以铁谱作为标准(波长标尺);为什么选铁谱?
Date
标准光谱比较定性法
为什么选铁谱?
(1)谱线多:在210~660nm范围内有数千条谱线;
(2)谱线间距离分配均匀:2. 定性方法
标准光谱比较法:
最常用的方法,以铁谱作为标准(波长标尺);为什么选铁谱?
Date
标准光谱比较定性法
为什么选铁谱?
(1)谱线多:在210~660nm范围内有数千条谱线;
(2)谱线间距离分配均匀:容易对比,适用面广;
(3)定位准确:已准确测量了铁谱每一条谱线的波长。
标准谱图:将其他元素的分析线标记在铁谱上,铁谱起到标尺的作用。
谱线检查:将试样与纯铁在完全相同条件下摄谱,将两谱片在映谱器(放大器)上对齐、放大20倍,检查待测元素的分析线是否存在,并与标准谱图对比确定。可同时进行多元素测定。
Date
Date
3. 定性分析实验操作技术
(1) 试样处理
a. 金属或合金可以试样本身作为电极,当试样量很少时,将试样粉碎后放在电极的试样槽内;
b. 固体试样研磨成均匀的粉末后放在电极的试样槽内;
c. 糊状试样先蒸干,残渣研磨成均匀的粉末后放在电极的试样槽内。液体试样可采用ICP-AES直接进行分析。
(2) 实验条件选择
a. 光谱仪
在定性分析中通常选择灵敏度高的直流电弧;狭缝宽度5~7m;分析稀土元素时,由于其谱线复杂,要选择色散率较高的大型摄谱仪。
Date
b. 电极
电极材料:采用光谱纯的碳或石墨,特殊情况采用铜电极;
电极尺寸:直径约6mm,长3~4 mm;
试样槽尺寸:直径约3~4 mm,
深3~6 mm;
试样量:10 ~20mg ;
放电时,碳+氮产生氰 (CN),~ nm产生带状光谱,干扰其他元素出现在该区域的光谱线,需要该区域时,可采用铜电极,但灵敏度低。
Date
(3)摄谱过程
摄谱顺序:碳电极(空白)、铁谱、试样;
分段暴光法:先在小电流(5A)激发光源摄取易挥发元素光谱调节光阑,改变暴光位置后,加大电流(10A),再次暴光摄取难挥发元素光谱;
采用哈特曼光阑,可多次暴光而不影响谱线相对位置,便于对比。
Date
二、 光谱定量分析 quantitative spectrometric analysis
1. 光谱半定量分析
与目视比色法相似;测量试样中元素的大致浓度范围;
应用:用于钢材、合金等的分类、矿石品位分级等大批量试样的快速测定。
谱线强度比较法:测定一系列不同含量的待测元素标准光谱系列,在完全相同条件下(同时摄谱),测定试样中待测元素光谱,选择灵敏线,比较标准谱图与试样谱图中灵敏线的黑度,确定含量范围。
Date
2. 光谱定量分析
(1) 发射光谱定量分析的基本关系式
在条件一定时,谱线强度I 与待测元素含量c关系为:
I = a c
a为常数(与蒸发、激发过程等有关),考虑到发射光谱中存在着自吸现象,需要引入自吸常数 b ,则:
发射光谱分析的基本关系式,称为塞伯-罗马金公式(经验式)。自吸常数 b 随浓度c增加而减小,当浓度很小,自吸消失时,b=1。
Date
(2) 内标法基本关系式
影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法(相对强度法)。
在被测元素的光谱中选择一条作为分析线(强度I),再选择内标物的一条谱线(强度I0),组成分析线对。则:
相对强度R:
A为其他三项合并后的常数项,内标法定量的基本关系式。
Date
内标元素与分析线对的选择:
a. 内标元素可以选择基体元素,或另外加入,含量固定;
b. 内标元素与待测元素具有相近的蒸发特性;
c. 分析线对应匹配,同为原子线或离子线,且激发电位相近(谱线靠近),“匀称线对”;
d. 强度相差不大,无相邻谱线干扰,无自吸或自吸小。
Date
(3) 定量分析方法
a. 内标标准曲线法
由 lgR = blgc +lgA
以lgR 对应lgc 作图,绘制标准曲线,在相同条件下,测定试样中待测元素的lgR,在标准曲线上求得未知试样lgc;
b. 摄谱法中的标准曲线法
S = lgR = blgc + lgA