文档介绍:SPSS统计分析第章平均数差异检验
重点班的学生和一般学生的平均智商是否有差异呢?要解决这个问题就可以运用本章将要介绍的平均数差异检验的方法。
假设检验原理
假设检验(hypothesis testing)是推择自变量:在源变量框中选择作为自变量的变量,即分组变量。单击下面的箭头按钮,该变量进入“自变量列表”框。首先选择的自变量默认为第一层控制变量,若单击“下一张”按钮,可以再选择其他变量作为第二层控制变量。
(5)选择描述性统计量:单击“选项”按钮,出现“选项”对话框,如图所示。
(6)选择进行单因素方差分析或线性相关性检验:在“选项”对话框的下方有两个复选按钮,分别是Anova 表 和 eta、线性相关检验,前者对第一层的自变量进行单因素方差分析和计算变量相关程度的eta值;后者在第一层自变量有三个以上水平时对其进行线性相关性检验。
(7)设置完成后,单击“继续”按钮返回均值主对话框,单击 “确定”按钮,执行操作,输出结果。
实例分析:某普通高校本科生自尊平均水平
在某普通高校随机抽取152名本科生,运用缺憾感量表对其自尊水平进行测量,收集测验数据。部分数据如下所示:
1.描述不同性别学生自尊的平均水平
解:在该案例中,因变量是被试的缺憾感量表的得分,即自尊水平;自变量是被试的性别和专业。要描述不同性别学生的自尊平均水平,可以直接由均值比较的操作实现。
操作过程
(1)创建新的数据文件:变量包括被试的性别、专业和自尊。
(2)打开主对话框并完成变量选择:选择“分析”|“比较均值”|“均值”命令,打开“均值”对话框。将因变量“自尊”选入“因变量列表”框中,将分组变量“性别”选入“自变量列表”框中,如图所示:
(3)选择描述性统计量:单击“选项”按钮,打开“选项”对话框。因为系统已将均值作为默认的描述统计量,因此可以不做其他选择。单击“继续”按钮,返回“均值”主对话框。
(4)单击“确定”按钮,执行操作,输出结果。
结果分析
(1)案例处理摘要表:
结果首先呈现的是案例处理摘要表。该表格呈现了在均值比较中参与统计分析的案例和排除的案例的个数和所占的百分比。如下表所示,有152个数据个案参与统计处理,占总个案数的100%,剔除的个案数为0。
(2)均值比较结果报表:
均值比较结果报表呈现了不同分组的描述性统计量变量,便于直观比较。如下表所示,分别呈现了女生和男生自尊的平均水平,女生共有85人参与检验,,;男生共有67人参与检验,,;所有参与比较的被试的总数为152,,。
2.描述不同性别和不同专业的学生的自尊平均水平
解:在该案例中,如果要描述不同性别和不同专业学生的平均自尊水平,需要有两层分组,分别以“性别”和“专业”为分组变量,可以通过均值比较中添加分组层次的功能来实现。
操作过程
(1)打开数据文件。
(2)打开主对话框并完成变量选择:选择“分析”|“比较均值”|“均值”命令,打开“均值”主对话框。将因变量“自尊”选入“因变量列表”框中,将分组变量“性别”选入“自变量列表”框中。单击“下一张”按钮,选择“专业”进入“自变量列表”框中作为第二层分组变量,如图所示:
(3)选择描述性统计量:选择描述性统计量:单击“选项”按钮,打开“选项”对话框。因为系统已将均值作为默认的描述统计量,因此可以不做其他选择。单击“继续”按钮,返回“均值”主对话框。
(4)单击“确定”按钮,执行操作,输出结果。
结果分析
结果除了呈现案例处理摘要表,还呈现了均值结果报表,如下表所示。从该统计报表中不仅可以分别看出女生和男生的平均自尊得分,还可以进一步看到不同专业的女生和男生的平均自尊得分,以及不同专业学生总体的平均自尊得分。例如哲学专业女生共有26人,,;心理学专业的学生共有111人,,。
单一样本T检验
,将不同的组进行一个直观的比较。在以下的三节中将介绍的检验方法有单样本T检验、独立样本T检验、配对样本T检验,根据数据的特征,选择运用合适的检验方法。
单一样本T检验的主要功能
单一样本t检验是比较某一样本的平均数与某一确定总体均值是否有统计学意义上的差异。用样本的平均数来估计样本所代表的未知总体的平均数,通过检验样本平均数与确定总体平均数值是否存在差异来推论未知总体是否和确定总体一致。
单一样本T检验的适用条件