文档介绍:增量型编码器与绝对型编码器的区分编码器如以信号原理来分,有增量型编码器,绝对型编码器。增量型编码器(旋转型)工作原理:由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取, 获得四组正弦波信号组合成 A、B、C、D, 每个正弦波相差 90 度相位差(相对于一个周波为 360 度),将C、D信号反向,叠加在 A、B两相上,可增强稳定信号;另每转输出一个 Z相脉冲以代表零位参考位。由于 A、B两相相差 90度,可通过比较 A相在前还是 B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。分辨率—编码器以每旋转 360 度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度 5~10000 线。信号输出:信号输出有正弦波(电流或电压),方波(TTL 、HTL ),集电极开路(PNP 、NPN ), 推拉式多种形式,其中 TTL 为长线差分驱动(对称 A,A-;B,B-;Z,Z- ),HTL 也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。信号连接—编码器的脉冲信号一般连接计数器、PLC 、计算机,PLC 和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。如单相联接,用于单方向计数,单方向测速。 两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。 A、A-,B、B-,Z、Z-连接, 由于带有对称负信号的连接,电流对于电缆贡献的电磁场为 0,衰减最小,抗干扰最佳,可传输较远的距离。对于 TTL 的带有对称负信号输出的编码器,信号传输距离可达 150 米。对于 HTL 的带有对称负信号输出的编码器,信号传输距离可达 300 米。增量式编码器的问题: 增量型编码器存在零点累计误差,抗干扰较差,接收设备的停机需断电记忆, 开机应找零或参考位等问题,这些问题如选用绝对型编码器可以解决。增量型编码器的一般应用: 测速,测转动方向,测移动角度、距离(相对)。绝对型编码器(旋转型) 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以 2 线、 4 线、 8 线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从 2的零次方到 2的n-1 次方的唯一的 2进制编码(格雷码),这就称为 n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。单圈绝对值编码器和多圈绝对值编码器旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过 360 度时,编码又回到原点,这样就不符合绝对编码唯一的原则, 这样的编码只能用于旋转范围 360 度以内的测量,称为单圈绝对值编码器。如果要测量旋转超过 360 度范围