文档介绍:高中高三数学教案设计:排列
排列
教学目的
(1)正确理解排列的意义。能利用树形图写出简略问习题的所有排列;(2)了解排列和排列数的意义,能根据详细的问习题,写出符合要求的排
列;
(3)掌公式在 时也能成立,办法 ,如同 时 一样,是一种办法, 因此,不能按阶乘数的原意作解释.
④建议应充分利用树形图对问习题进行剖析,这样比较直观,便于理解.⑤学生在开始做排列应用习题的作业时,应要求他们写出解法的简要说明,
而不能只列出算式、 得出答数,这样有利于学生得更加扎实. 随着学生解习题熟练程度的提高,可以逐渐降低这种要求.
教学教案示例
排列
教学目的
(1)正确理解排列的意义。能利用树形图写出简略问习题的所有排列;(2)了解排列和排列数的意义,能根据详细的问习题,写出符合要求的排
列;
(3)会剖析与数字有关的排列问习题,培养学生的抽象能力和逻辑思维能
力;
教学重点难点
重点是排列的定义、排列数并运用这个公式去解决有关排列数的应用问习题。
难点是解有关排列的应用习题。
2 / 5
教学过程设计
一、 复习引入
上节课我们学习了两个基本原理, 请大家完成以下两习题的练习 (用投影仪出示):
1.书架上层放着 50 本不同的社会科学书,下层放着 40 本不同的自然科学的书.
(1)从中任取 1 本,有多少种取法?
(2)从中任取社会科学书与自然科学书各 1 本,有多少种不同的取法?
2.XXXX农场为了考查三个外地优良种类A,B,C,计划在甲、乙、丙、丁、戊共五品种型的土地上分别进行引种试验,问共需安排多少个试验小区?
找一同学谈解答并说明怎样思考的的过程
第 1(1)小习题从书架上任取 1 本书,有两类规定, 第一类规定是从上层取社会科学书, 可以从 50 本中任取 1 本,有 50 种方法;第二类规定是从下层取自然科学书,可以从 40 本中任取 1 本,有 40 种方法.根据加法原理,得到不同的
取法种数是 50+40=90.第( 2)小习题从书架上取社会科学、自然科学书各 1 本(共取出 2 本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一
本自然科学书,根据乘法原理,得到不同的取法种数是: 50×40=2000.
第 2 习题说,共有A,B,C三个优良种类,而每个种类在甲类型土地上实
验有三个小区,在乙类型的土地上有三个小区 所以共需 3×5=15 个实验小
区.
二、 讲授新课
学习了两个基本原理之后, 现在我们继续学习排列问习题, 这是我们本节讨论的重点.先从实例入手:
1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?
由学生设计好方案并答复.
(1)用加法原理设计方案.
首先确定起点站, 如果北京是起点站, 终点站是上海或广州, 需要制 2 种飞机票,若起点站是上海,终点站是北京或广州,又需制 2 种飞机票;若起点站是广州,终点站是北京或上海,又需要 2 种飞机票,共需要 2+2+2=6种飞机票.
(2)用乘法原理设计方案.
首先