文档介绍:第六章+SPSS方差分析
3、比较观测变量总离差平方和各部分的比例
在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由于控制变量引起的,可以主要由控制变量来解释,即控制变量给观测变量带来了显测变量产生了显著影响,进一步还应确定,控制变量的不同水平对观测变量的影响程度如何,其中哪个水平的作用明显大于其它水平,哪些水平的作用是不显著的。例如已经确定不同施肥量会对农作物的产量产生显著影响,便希望进一步了解究竟是10公斤、20公斤还是30公斤施肥量最有利于提高产量,哪种施肥量对农作物产量没有显著影响。掌握了这些信息,我们就能够制定合理的施肥方案。
多重比较检验就是分别对每个水平下的观测变量均值进行逐对比较,判断两均值之间是否存在显著差异。其零假设是相应组的均值之间无显著差异。
SPSS提供的多重比较检验的方法比较多,有些方法适用在各总体方差相等的条件下,有些适用在方差不相等的条件下。
其中LSD方法适用于各总体方差相等的情况,特点是比较灵敏;Tukey方法和S-N-K方法适用于各水平下观测变量个数相等的情况;Scheffe方法比Tukey方法不灵敏。
3、其他检验
(1)先验对比检验
如果发现某些水平与另一些水平的均值差距显著,就可以进一步比较这两组总的均值是否存在显著差异。在检验中,SPSS根据用户确定的各均值的系数,再对其线性组合进行检验,来判断各相似性子集间均值的差异程度。
(2)趋势检验
当控制变量为定序变量时,趋势检验能够分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的。
4、单因素方差分析进一步分析的操作
(1)Option选项
Option选项用来对方差分析的前提条件进行检验,并可输出其他相关统计量和对缺失数据进行处理。
Homogeneity of variance test选项实现方差齐性检验;Descriptive选项输出观测变量的基本描述统计量;Brown-Forsythe、Welch选项可计算其统计量以检验各组均值的相等性,当方差齐性不成立时应选择使用这两个统计量而不是F统计量。Means Plot选项输出各水平下观测变量均值的折线图;Missing Values框中提供了两种缺失数据的处理方式。
(2)Post Hoc选项
Post Hoc选项用来实现多重比较检验。
提供了18种多重比较检验的方法。其中Equal Variances Assumed框中的方法适用于各水平方差齐性的情况。在方差分析中,由于其前提所限,应用中多采用Equal Variances Not Assumed框中的方法。多重比较检验中,,可以根据实际情况修改Significance level后面的数值以进行调整。
(3)Contrasts选项
Contrasts选项用来实现先验对比检验和趋势检验。
如果进行趋势检验,则应选择Polynomial选项,然后在后面的下拉框中选择趋势检验的方法。其中Linear表示线性趋势检验;Quadratic表示进行二次多项式检验;Cubic表示进行三次多项式检验,4th和5th表示进行四次和五次多项式检验。
如果进行先验对比检验,则应在Coefficients后依次输入系数ci,并确保∑ci=0。应注意系数输入的顺序,它将分别与控制变量的水平值相对应。
单因素方差分析进一步分析应用举例
前面例子中已经利用单因素方差分析分别对广告形式、地区对销售额的影响进行了分析。分析的结论是不同的广告形式、不同的地区对销售额有显著影响,下面可作进一步的分析。
1、方差齐性检验
不同广告形式、不同地区下销售额总体方差是否相同,是否满足单因素方差分析的前提要求,是应首先检验的问题。
2、多重比较检验
总体上讲,不同广告形式对产品的销售额有显著影响,那么究竟哪种广告形式的作用较明显哪种不明显,这些问题可通过多重比较检验实现。同理,可对商品在不同地区的销售额情况进行分析。(采用LSD,Bonferroni,Tukey,Scheffe,S-N-K五种方法)
3、趋势检验
通过上面的分析,可以清楚地掌握不同地区的销售情况。这里,如果假定不同地区的差异表现在人口密度方面(地区编号小的人口密度高,地区编号大的人口密度低),那么进一步可分析不同地区销售额总体上是否会随着地区人口密度的减少而呈现出某种趋势性的变化规律,进而为市场细分提供依据。
4、