文档介绍:人教版高一数学必修三知识点
(1)指数函数的定义域为全部实数的集合,这里的前提是a大于0,对于a不大于0的状况,则必定使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下
人教版高一数学必修三知识点
(1)指数函数的定义域为全部实数的集合,这里的前提是a大于0,对于a不大于0的状况,则必定使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个明显的规律,就是当a从0趋向于无穷大的过程中(固然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)明显指数函数无界。
奇偶性
定义
一般地,对于函数f(x)
(1)假如对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)假如对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)假如对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)假如对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
人教版高一数学必修三学问点
一、函数的单调性
1、函数单调性的定义
2、函数单调性的推断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法
二、函数的奇偶性和周期性
1、函数的奇偶性和周期性的定义
2、函数的奇偶性的判定和证明(方法)
3、函数的周期性的判定方法
三、函数的图象
1、函数图象的作法(1)描点法(2)图象变换法
2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
常见考法
本节是段考和高考必不行少的考察内容,是段考和高考考察的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考察,多属于拔高题。多考察函数的单调性、最值和图象等。
误区提示
1、求函数的单调区间,必需先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必需用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“”连接,只能用逗号隔开。
4、推断函数的奇偶性,首先必需考虑函数的定义域,假如函数的定义域不关于原点对称,则函数肯定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。
人教版高一数学必修三学问点
1、柱、锥、台、球的构造特征
(1)棱柱:
定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体