文档介绍:该【考研线性代数知识点全面总结 】是由【莫比乌斯】上传分享,文档一共【7】页,该文档可以免费在线阅读,需要了解更多关于【考研线性代数知识点全面总结 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。《线性代数》复习提纲
第一章、行列式
:用个元素组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;
(2)展开式共有n!项,其中符号正负各半;
一阶|α|=α行列式,二、三阶行列式有对角线法则;
N阶(n3)行列式的计算:降阶法
定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;
行列式值为0的几种情况:
Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;
Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
:全排列、排列的逆序数、奇排列、偶排列、余子式、代数余子式
定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n阶行列式也可定义:,t为的逆序数
:
1、行列式与其转置行列式相等。
2、互换行列式两行或两列,行列式变号。若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k乘此行列式。行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。(按行、列展开法则)
7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.
:
:若线性方程组的系数行列式,则方程有且仅有唯一解。
:若线性方程组无解或有两个不同的解,则系数行列式D=0.
:若齐次线性方程组的系数行列式,则其没有非零解。
:若齐次线性方程组有非零解,则其系数行列式D=0。
6. ,
范德蒙德行列式
,,(两式要会计算)
题型:Page21(例13)
第二章、矩阵
(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);
(1)加减、数乘、乘法运算的条件、结果;
(2)关于乘法的几个结论:
①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);
②矩阵乘法一般不满足消去律、零因式不存在;
③若A、B为同阶方阵,则|AB|=|A|*|B|;
④|kA|=*|A|。只有方阵才有幂运算。
(3)转置:(kA)T=kAT,
(4)方阵的行列式:,,
(5)伴随矩阵:,,的行元素是A的列元素的代数余子式
(6)共轭矩阵:,,,
(7)矩阵分块法:,
:方阵。对称阵特点:元素以对角线为对称轴对应相等。
(1)定义:非零子式的最大阶数称为矩阵的秩;
(2)秩的求法:一般不用定义求,而用下面结论:
矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
求秩:利用初等变换将矩阵化为阶梯阵得秩。
(3)0≤R()≤min{m,n} ; ;若,则R(A)=R(B) ;
若P、Q可逆,则R(PAQ)=R(A) ; max{R(A),R(B)}≤R(A,B)≤R(A)+R(B) ;
若AB=C,R(C)≤min{R(A),R(B)}
(1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立);
(2)性质:,;(AB的逆矩阵,你懂的)(注意顺序)
(3)可逆的条件:① |A|≠0; ②r(A)=n;  ③A->I;
(4)逆的求解:伴随矩阵法;②初等变换法(A:I)->(施行初等变换)(I:)
(5)方阵A可逆的充要条件有:存在有限个初等矩阵,…,,使
第三章、初等变换与线性方程组
1、初等变换:,,性质:初等变换可逆。
等价:若A经初等变换成B,则A与B等价,记作,等价关系具有反身性、对称性、传递性。
初等矩阵:由单位阵E经过一次初等变换得到的矩阵。
定理:对施行一次初等行变换,相当于在A的左边乘相应的m阶初等矩阵;对施行一次初等列变换,相当于在A的右边乘相应的n阶初等矩阵。
等价的充要条件:R(A)=R(B)=R(A,B)
的矩阵A、B等价存在m阶可逆矩阵P、n阶可逆矩阵Q,使得PAQ=B。
线性方程组解的判定
定理:(1)r(A,b)≠r(A) 无解;(2)r(A,b)=r(A)=n 有唯一解;
(3)r(A,b)=r(A)<n  有无穷多组解;
特别地:对齐次线性方程组AX=0,(1) r(A)=n 只有零解;(2) r(A)<n 有非零解;
    再特别,若为方阵,(1)|A|≠0 只有零解;(2)|A|=0  有非零解
(1)解的情况:r(A)=n只有零解 ;r(A)<n有无穷多组非零解。
(2)解的结构:。
(3)求解的方法和步骤:
①将增广矩阵通过行初等变换化为最简阶梯阵;②写出对应同解方程组;
③移项,利用自由未知数表示所有未知数;④表示出基础解系;⑤写出通解。
(4)性质:
若和是向量方程A*x=0的解,则、也是该方程的解。
齐次线性方程组的解集的最大无关组是该齐次线性方程组的基础解系。
若,则n元齐次线性方程组A*x=0的解集S的秩。
(1)解的情况:有解R(A)=R(A,b)。唯一解R(A)=R(A,b)=n。无限解R(A)=R(A,b)<n。
(2)解的结构: X=u+。
(3)无穷多组解的求解方法和步骤:与齐次线性方程组相同。
(4)唯一解的解法:有克莱姆法则、逆矩阵法、消元法(初等变换法)。
(5)若、都是方程的解,则是对应齐次方程的解
是方程的解,是的解,则也是的解。
第四章、向量组的线性相关性
(注:向量实际上就是特殊的矩阵——行矩阵和列矩阵;默认向量a为列向量)。
:
(1)加减、数乘运算(与矩阵运算相同);
(2)向量内积 α'β=a1b1+a2b2+…+anbn;
(3)向量长     
(4)向量单位化 (1/|α|)α;
(1)定义:若,则称b是向量组,,…,的一个线性组合,或称b可以用向量组,,…,的线性表示。
(2)判别方法:将向量组合成矩阵,记 A=(,,…,)
B=(,,…,,β),则:r (A)=r (B)b可以用向量组,,…,线性表示。
B=(,,…,),则:B能由A线性表示R(A)=R(A,B)AX=B有解R(B)≤R(A).
(3)求线性表示表达式的方法:矩阵B施行行初等变换化为最简阶梯阵,则最后一列元素就是表示的系数。
注:求线性表示的系数既是求解Ax=b
(1)线性相关与线性无关的定义
设 ,若k1,k2,…,kn不全为0,称线性相关;若全为0,称线性无关。
(2)判别方法:
① r(α1,α2,…,αn)<n,线性相关;   r(α1,α2,…,αn)=n,线性无关。
②若有n个n维向量,可用行列式判别: n阶行列式|{}|=0,线性相关(≠0无关)
A:,,…,,B:,,…,,,若A相关则B一定相关,若B相关A不一定相关;
若A无关,B相关,则向量必能由A线性表示,且表示式唯一。
注:含零向量的向量组必定相关。
(1)定义:最大无关组所含向量个数称为向量组的秩
(2)求法:设A=(,,…,),将A化为阶梯阵,则A的秩即为向量组的秩,而每行的第一个非零元所在列的向量就构成了极大无关组。
(3)矩阵的秩等于它的行向量组的秩也等于它的列向量组的秩。
注:如何证明,.
第五章、相似矩阵及二次型
1、向量内积:。
内积性质:,,;
:当x=0时,,当x0时,
2、向量长度:
性质:非负性、齐次性、三角不等式
3、正交:称x与y正交。若x=0,则x与任何向量都正交。
正交向量组是指一组两两正交的非零向量。
定理:若m维向量,,…,是正交向量组,则,,…,线性无关。
正交阵:,。
性质:若A为正交阵则也是正交阵,且;若A、B都正交,则AB正交。
规范正交基:设m维向量,,…,是向量空间V的一个基,若,,…,两两正交,且都是单位向量,则称,,…,是V的一个规范正交基。
规范正交化:施密特正交化过程:,,……
正交变换:P为正交阵,称为正交变换。有
4、矩阵的特征值和特征向量
定义:对方阵A,若存在非零向量和数λ使,则称λ是矩阵A的特征值,向量称为矩阵A的对应于特征值λ的特征向量。
特征值和特征向量的求解:求出特征方程||=0的根即为特征值,将特征值λ代入对应齐次线性方程组()=0中求出方程组的所有非零解即为特征向量。
重要结论与定理:
(1)A可逆的充要条件是A的特征值不等于0;(2)A与A的转置矩阵A'有相同的特征值;
(3)不同特征值对应的特征向量线性无关。 (4)对的特征值有:;。
(5)若λ是A的特征值,则是的特征值,是的特征值。(6),,…,是方阵A的m个特征值,对应特征向量是,,…,,若互不相等,则互不相关。
5、矩阵的相似
定义:同阶方阵A、B,若有可逆阵P,,则A与B相似。P为把A变为B的相似变换矩阵。
若n阶矩阵A与对角阵相似,则对角阵元素即是A的n个特征值。
若f(λ)是矩阵A的特征多项式,则f(A)=0。
与对角阵相似A有n个线性无关的特征向量。
若的n个特征值互不相等,则A与对角线对视。
求A与对角矩阵相似的方法与步骤(求P和):求出所有特征值;求出所有特征向量;
若所得线性无关特征向量个数与矩阵阶数相同,则A可对角化(否则不能对角化),将这n个线性无关特征向量组成矩阵即为相似变换的矩阵P,依次将对应特征值构成对角阵即为。
通过正交变换求与实对称矩阵A相似的对角阵:方法与相同,但要将所得特征向量正交化且单位化。
6、二次型
二次型:n元二次多项式f(,,…,)=称为二次型。若=0(i≠j),则称为二交型的标准型。如果标准型的系数为1、-1或0,则为规范型。
合同:A、B为n阶矩阵,若有可逆阵C,使,则A与B合同。
二次型标准化:配方法和正交变换法。正交变换法步骤与上面对角化完全相同,这是由于对正交矩阵Q,=Q',即正交变换既是相似变换又是合同变换。
任意给定二次型(),总有正交变换x=Py,使f化为标准型,其中。,,…,是的特征值。
任给n元二次型,总有可逆变换,使为规范型。
:
(1)惯性定理:二次型的可逆变换的标准型中的正系数个数不变。概念:正、负惯性指数……
(2)设二次型,如对任何,有>0,则称f为正定二次型,称对称阵A是正定的。
(3)正定的充要条件:①A的所有特征值都是正数,即标准型系数全为正,即正惯性指数为n。
②A的所有顺序主子式都大于0;