1 / 38
文档名称:

高中物理必修二知识点总结(人教版).doc

格式:doc   大小:2,008KB   页数:38页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

高中物理必修二知识点总结(人教版).doc

上传人:莫比乌斯 2022/10/27 文件大小:1.96 MB

下载得到文件列表

高中物理必修二知识点总结(人教版).doc

文档介绍

文档介绍:该【高中物理必修二知识点总结(人教版) 】是由【莫比乌斯】上传分享,文档一共【38】页,该文档可以免费在线阅读,需要了解更多关于【高中物理必修二知识点总结(人教版) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。第五章平抛运动
§5-1曲线运动&运动的合成与分解
曲线运动
:物体运动轨迹是曲线的运动。
:运动物体所受合力的方向跟它的速度方向不在同一直线上。
:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。
②运动类型:变速运动(速度方向不断变化)。
③F合≠0,一定有加速度a。
④F合方向一定指向曲线凹侧。
⑤F合可以分解成水平和竖直的两个力。
运动描述——蜡块运动
P
蜡块的位置
v
vx
vy
涉及的公式:
θ
运动的合成与分解
合运动与分运动的关系:等时性、独立性、等效性、矢量性。
互成角度的两个分运动的合运动的判断:
①两个匀速直线运动的合运动仍然是匀速直线运动。
②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a合为分运动的加速度。
③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。
④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。
有关“曲线运动”的两大题型
小船过河问题
v
v水
v船
θ
,
d
d
v
v水
v船
θ
当v水<v船时,xmin=d,
,
模型一:过河时间t最短:模型二:直接位移x最短:模型三:间接位移x最短:
A
v水
v船
θ
当v水>v船时,,
,
θ
v船
d
[触类旁通]1.(2011年上海卷)如图5-4所示,人沿平直的河岸以速度v行走,且通过不可伸长的绳拖船,,当绳与河岸的夹角为α时,船的速率为(C)。
解析:依题意,船沿着绳子的方向前进,即船的速度总是沿着绳子的,根据绳子两端连接的物体在绳子方向上的投影速度相同,可知人的速度v在绳子方向上的分量等于船速,故
v船=vcosα,C正确.
2.(2011年江苏卷)如图5-5所示,甲、乙两同学从河中O点出发,分别沿直线游到A点和B点后,立即沿原路线返回到O点,OA、OB分别与水流方向平行和垂直,且OA=,两人在静水中游速相等,则他们所用时间t甲、t乙的大小关系为(C)
<=t乙
>
解析:设游速为v,水速为v0,OA=OB=l,则t甲=+;乙沿OB运动,乙的速度矢量图如图4所示,合速度必须沿OB方向,则t乙=2·,联立解得t甲>t乙,C正确.
绳杆问题(连带运动问题)
1、实质:合运动的识别与合运动的分解。
2、关键:①物体的实际运动是合速度,分速度的方向要按实际运动效果确定;
②沿绳(或杆)方向的分速度大小相等。
模型四:如图甲,绳子一头连着物体B,一头拉小船A,这时船的运动方向不沿绳子。
B
O
O
A
vA
θ
v1
v2
vA


处理方法:如图乙,把小船的速度vA沿绳方向和垂直于绳的方向分解为v1和v2,v1就是拉绳的速度,vA就是小船的实际速度。
[触类旁通]如图,在水平地面上做匀速直线运动的汽车,通过定滑轮用绳子吊起一个物体,若汽车和被吊物体在同一时刻的速度分别为v1和v2,则下列说法正确的是(C)
,且v2=,且v2>v1
,且v2<,且v2<v1
解析:汽车向左运动,这是汽车的实际运动,:一是滑轮到汽车之间的绳变长了;,故应分解车的速度,如图,沿绳方向上有速度v2=,而θ逐渐增大,所以v2逐渐增大,故被吊物体做加速运动,且v2<v1,C正确.
§5-2平抛运动&类平抛运动
一、抛体运动
:以一定的速度将物体抛出,在空气阻力可以忽略的情况下,物体只受重力的作用,它的运动即为抛体运动。
:①物体具有初速度;②运动过程中只受G。
二、平抛运动
:如果物体运动的初速度是沿水平方向的,这个运动就叫做平抛运动。
:①物体具有水平方向的加速度;②运动过程中只受G。
位移:
速度:,,,
推论:①从抛出点开始,任意时刻速度偏向角θ的正切值等于位移偏向角φ的正切值的两倍。证明如下:,tanθ=tanα=2tanφ。
②从抛出点开始,任意时刻速度的反向延长线对应的水平位移的交点为此水平位移的中点,即如果物体落在斜面上,则位移偏向角与斜面倾斜角相等。
:平抛运动可以看作两个分运动的合运动:一个是水平方向的匀速直线运动,一个是竖直方向的自由落体运动。
:
α
[牛刀小试]如图为一物体做平抛运动的x-y图象,物体从O点抛出,x、(a,b),其速度的反向延长线交于x轴的A点(A点未画出),则OA的长度为(B)

解析:作出图示(如图5-9所示),设v与竖直方向的夹角为α,根据几何关系得tanα=①,由平抛运动得水平方向有a=v0t②,竖直方向有
b=vyt③,由①②③式得tanα=,在Rt△AEP中,AE=btanα=,所以OA=.
——影响做平抛运动的物体的飞行时间、射程及落地速度的因素
飞行时间:,t与物体下落高度h有关,与初速度v0无关。
水平射程:由v0和h共同决定。
落地速度:,v由v0和vy共同决定。
处理方法:;。
考点一:物体从A运动到B的时间:根据
考点二:B点的速度vB及其与v0的夹角α:
考点三:A、B之间的距离s:
三、平抛运动及类平抛运动常见问题
模型一:斜面问题:
[触类旁通](2010年全国卷Ⅰ)一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图5-(D)
解析:如图5所示,平抛的末速度与竖直方向的夹角等于斜面倾角θ,有tanθ=,则下落高度与水平射程之比为===,D正确.
思路分析:排球的运动可看作平抛运动,把它分解为水平的匀速直线运动和竖直的自由落体运动来分析。但应注意本题是“环境”限制下的平抛运动,应弄清限制条件再求解。关键是要画出临界条件下的图来。
例:如图1所示,排球场总长为18m,设球网高度为2m,运动员站在离网3m的线上(图中虚线所示)正对网前跳起将球水平击出。(不计空气阻力)
(1),试问击球的速度在什么范围内才能使球即不触网也不越界?
(2)若击球点在3m线正上方的高度小余某个值,那么无论击球的速度多大,球不是触网就是越界,试求这个高度?
模型二:临界问题:
考点一:沿初速度方向的水平位移:根据
考点二:入射的初速度:
考点三:P到Q的运动时间:
模型三:类平抛运动:
[综合应用](2011年海南卷)如图所示,水平地面上有一个坑,其竖直截面为半圆,,,求坑的半径。
解:设坑的半径为r,由于小球做平抛运动,则
x=v0t①
y==gt2②
过c点作cd⊥ab于d点,则有Rt△acd∽Rt△cbd
可得cd2=ad·db
即为()2=x(2r-x)③
又因为x>r,联立①②③式解得r=v.
§5-3圆周运动&向心力&生活中常见圆周运动
一、匀速圆周运动
:物体的运动轨迹是圆的运动叫做圆周运动,物体运动的线速度大小不变的圆周运动即为匀速圆周运动。
:①轨迹是圆;②线速度、加速度均大小不变,方向不断改变,故属于加速度改变的变速曲线运动,匀速圆周运动的角速度恒定;③匀速圆周运动发生条件是质点受到大小不变、方向始终与速度方向垂直的合外力;④匀速圆周运动的运动状态周而复始地出现,匀速圆周运动具有周期性。
:
(1)线速度v是描述质点沿圆周运动快慢的物理量,是矢量;其方向沿轨迹切线,国际单位制中单位符号是m/s
,匀速圆周运动中,v的大小不变,方向却一直在变;
(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量;国际单位符号是rad/s;
(3)周期T是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;
(4)频率f是质点在单位时间内完成一个完整圆周运动的次数,在国际单位制中单位符号是Hz;
(5)转速n是质点在单位时间内转过的圈数,单位符号为r/s,以及r/min.
:
三种常见的转动装置及其特点:
A
B
r2
r1
r
R
O
B
A
模型一:共轴传动模型二:皮带传动模型三:齿轮传动
A
B
O
r
R
O
[触类旁通]1、一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,有质量相同的小球A和B沿着筒的内壁在水平面内做匀速圆周运动,如图所示,A的运动半径较大,则(AC)




解析:小球A、B的运动状态即运动条件均相同,属于三种模型中的皮带传送。则可以知道,两个小球的线速度v相同,B错;因为RA>RB,则ωA<ωB,TA<TB,;又因为两小球各方面条件均相同,所以,两小球对筒壁的压力相同,D错。所以A、C正确。
2、两个大轮半径相等的皮带轮的结构如图所示,AB两点的半径之比为2:1,CD两点的半径之比也为2:1,则ABCD四点的角速度之比为1∶1∶2∶2,这四点的线速度之比为2∶1∶4∶2。
二、向心加速度
:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫向心加速度。
注:并不是任何情况下,向心加速度的方向都是指向圆心。当物体做变速圆周运动时,向心加速度的一个分加速度指向圆心。
:在匀速圆周运动中,始终指向圆心,始终与线速度的方向垂直。向心加速度只改变线速度的方向而非大小。
:描述圆周运动速度方向方向改变快慢的物理量。
:
O
O
an
an
r
r
v一定
ω一定
:
A
B
[触类旁通]1、如图所示的吊臂上有一个可以沿水平方向运动的小车A,小车下装有吊着物体B的吊钩。在小车A与物体B以相同的水平速度沿吊臂方向匀速运动的同时,吊钩将物体B向上吊起。A、B之间的距离以d=H-2t2(SI)(SI表示国际单位制,式中H为吊臂离地面的高度)规律变化。对于地面的人来说,则物体做(AC)




2、如图所示,位于竖直平面上的圆弧轨道光滑,半径为R,OB沿竖直方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,到达B点时的速度为,最后落在地面上C点处,不计空气阻力,求:
(1)小球刚运动到B点时的加速度为多大,对轨道的压力多大;
(2)小球落地点C与B点水平距离为多少。
三、向心力
:做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。
:总是指向圆心。
:
:①向心力的方向总是指向圆心,它的方向时刻在变化,虽然它的大小不变,但是向心力也是变力。②在受力分析时,只分析性质力,而不分析效果力,因此在受力分析是,不要加上向心力。③描述做匀速圆周运动的物体时,不能说该物体受向心力,而是说该物体受到什么力,这几个力的合力充当或提供向心力。
四、变速圆周运动的处理方法
:线速度、向心力、向心加速度的大小和方向均变化。
:合外力沿法线方向的分力提供向心力:。合外力沿切线方向的分力产生切线加速度:FT=mωaT。
离心运动:
当物体实际受到的沿半径方向的合力满足F供=F需=mω2r时,物体做圆周运动;当F供<F需=mω2r时,物体做离心运动。
离心运动并不是受“离心力”的作用产生的运动,而是惯性的表现,是F供<F需的结果;离心运动也不是沿半径方向向外远离圆心的运动。
圆周运动的典型类型
类型
受力特点
图示
最高点的运动情况
用细绳拴一小球在竖直平面内转动
绳对球只有拉力
①若F=0,则mg=,v=
②若F≠0,则v>
小球固定在轻杆的一端在竖直平面内转动
杆对球可以是拉力也可以是支持力
①若F=0,则mg=,v=
②若F向下,则mg+F=m,v>
③若F向上,则mg-F=或mg-F=0,则0≤v<
小球在竖直细管内转动
管对球的弹力FN可以向上也可以向下
依据mg=判断,若v=v0,FN=0;若v<v0,FN向上;若v>v0,FN向下
球壳外的小球
在最高点时弹力FN的方向向上
①如果刚好能通过球壳的最高点A,则vA=0,FN=mg
②如果到达某点后离开球壳面,该点处小球受到壳面的弹力FN=0,之后改做斜抛运动,若在最高点离开则为平抛运动
六、有关生活中常见圆周运动的涉及的几大题型分析
解题步骤:
①明确研究对象;
②定圆心找半径;
③对研究对象进行受力分析;
④对外力进行正交分解;
⑤列方程:将与和物体在同一圆周运动平面上的力或其分力代数运算后,另得数等于向心力;
⑥解方程并对结果进行必要的讨论。
典型模型:
I、圆周运动中的动力学问题
谈一谈:圆周运动问题属于一般的动力学问题,无非是由物体的受力情况确定物体的运动情况,或者由物体的运动情况求解物体的受力情况。解题思路就是,以加速度为纽带,运用那个牛顿第二定律和运动学公式列方程,求解并讨论。
a、涉及公式:①
②,由①②得:。
b、分析:设转弯时火车的行驶速度为v,则:
若v>v0,外轨道对火车轮缘有挤压作用;
若v<v0,内轨道对火车轮缘有挤压作用。
模型一:火车转弯问题:
FN
F合
mg
h
L
a、涉及公式:,所以当,
此时汽车处于失重状态,而且v越大越明显,因此汽车过拱桥时不宜告诉行驶。
b、分析:当:
,汽车对桥面的压力为0,汽车出于完全失重状态;
,汽车对桥面的压力为。
,汽车将脱离桥面,出现飞车现象。
c、注意:同样,当汽车过凹形桥底端时满足,汽车对桥面的压力将大于汽车重力,汽车处于超重状态,若车速过大,容易出现爆胎现象,即也不宜高速行驶。
模型二:汽车过拱桥问题:
[触类旁通]1、铁路在弯道处的内外轨道高度是不同的,已知内外轨道平面与水平面的倾角为θ,如图所示,弯道处的圆弧半径为R,若质量为m的火车转弯时速度小于,则(A)




解析:当内外轨对轮缘没有挤压时,物体受重力和支持力的合力提供向心力,此时速度为

如图所示,质量为m的物体从半径为R的半球形碗边向碗底滑动,滑倒最低点时的速度为v。若物体滑倒最低点时受到的摩擦力是f,则物体与碗的动摩擦因数μ为(B)。
A、B、C、D、
解析:设在最低点时,碗对物体的支持力为F,则,解得,由
f=μF解得,化简得,所以B正确。
II、圆周运动的临界问题
常见竖直平面内圆周运动的最高点的临界问题
谈一谈:竖直平面内的圆周运动是典型的变速圆周运动。对于物体在竖直平面内做变速圆周运动的问题,中学物理只研究问题通过最高点和最低点的情况,并且经常出现有关最高点的临界问题。
(注意:绳对小球只能产生沿绳收缩方向的拉力.)
(1)临界条件:小球到达最高点时,绳子的拉力或单轨的弹力刚好等于0,小球的重力提供向心力。即:

小球能过最高点的条件:,绳对球产生向下的拉力或轨道对球产生向下的压力。
小球不能过最高点的条件:(实际上球还没到最高点时就脱离了轨道)。
模型三:轻绳约束、单轨约束条件下,小球过圆周最高点:
v
v
v
O
绳O
R
模型四:轻杆约束、双轨约束条件下,小球过圆周最高点:
杆O
v

v

③当时,FN=0;
④当时,轻杆对小球有指向圆心的拉力,其大小随速度的增大而增大。
如图乙所示的小球过最高点时,光滑双轨对小球的弹力情况:
①当v=0时,轨道的内壁下侧对小球有竖直向上的支持力FN,其大小等于小球的重力,即FN=mg;
②当时,轨道的内壁下侧对小球仍有竖直向上的支持力FN,大小随小球速度的增大而减小,其取值范围是;
③当时,FN=0;
④当时,轨道的内壁上侧对小球有竖直向下指向圆心的弹力,其大小随速度的增大而增大。
(1)临界条件:由于轻杆和双轨的支撑作用,小球恰能到达最高点的临街速度
(2)如图甲所示的小球过最高点时,轻杆对小球的弹力情况:①当v=0时,轻杆对小球有竖直向上的支持力FN,其大小等于小球的重力,即FN=mg;
②当时,轻杆对小球的支持力的方向竖直向上,大小随小球速度的增大而减小,其取值范围是;