1 / 53
文档名称:

蛋白质不稳定性.pptx

格式:pptx   大小:610KB   页数:53页
下载后只包含 1 个 PPTX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

蛋白质不稳定性.pptx

上传人:niuwk 2022/11/14 文件大小:610 KB

下载得到文件列表

蛋白质不稳定性.pptx

文档介绍

文档介绍:该【蛋白质不稳定性 】是由【niuwk】上传分享,文档一共【53】页,该文档可以免费在线阅读,需要了解更多关于【蛋白质不稳定性 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。一、蛋白质失活的机制
根据蛋白质的结构层次不同,经常将蛋白质的结构分为一级结构、二级结构、三级结构和四级结构。
蛋白质的一级结构就是共价主链的氨基酸序列,有时也称化学结构。二、三、四级结构又称空间结构(即三维结构)或高级结构。
蛋白质的生物功能决定于它的高级结构,高级结构是由一级结构即氨基酸序列决定的。而氨基酸序列是由遗传物质DNA的核苷酸序列决定的。肽键(CO-NH)是连接多肽链主链中氨基酸残基的共价键,二硫键(-S-S-)是使多肽链之间交联或使多肽链内成环的共价键。
第1页/共53页
一、蛋白质失活的机制
蛋白质不稳定(失活)的表现分为两种,即化学不稳定和物理不稳定。
化学不稳定是指蛋白质分子通过共价键的形成和断裂形成新的化学实体;
物理不稳定指蛋白质分子的高级结构的物理转变,无共价键改变。物理不稳定包括变性、聚集、沉淀和表面吸附。
蛋白质一旦发生了化学不稳定,就会完全丧失其原有生理活性,产生新的功能活性或完全丧失生物活性。但物理不稳定现象一般可以通过特定的途径恢复其空间结构,而恢复原有的活性,我们称这一过程为蛋白质的复性。
第2页/共53页
二、蛋白质结构中影响稳定性的重要因素
蛋白质的天然折叠结构决定于3个因素:
1、与溶剂分子(一般为水)的相互作用;
2、溶剂的pH和离子组成;
3、蛋白质的氨基酸序列。
前两个因素的影响明确、易理解,而氨基酸序列的作用则不那么直觉。实际上,一级结构便于序列上相邻部分之间短程相互作用的形成,也便于相隔部分之间长程相互作用的出现,虽然蛋白质分子的整个结构出看起来像是无组织的随机排列,然而其结构中无例外地有多种力处于精细的平衡之中,正是它决定了蛋白质的独特构象。
第3页/共53页
二、蛋白质结构中影响稳定性的重要因素
稳定蛋白质三维结构的作用力主要是一些所谓的弱的相互作用或称非共价键或次级键,包括:氢键、范德华力、疏水作用和盐键(离子键)。此外,共价二硫键在稳定某些蛋白质的构象方面也起着重要作用。
这几种作用力的键能(断裂该键所需的能量)都是较低的。
第4页/共53页
二、蛋白质结构中影响稳定性的重要因素
氢键13-30KJ/mol-1
范德华力4-8KJ/mol-1
疏水作用12-20KJ/mol-1(注意:疏水作用的数值表示在25℃非极性侧链能够从蛋白质内部转移到水介质中所需的自由能,它与其他键的键能不同,此数值在一定范围内随温度的升高而增加。实际上它并不是键能,此能量的大部分并不用于伸展过程中键的断裂。)
盐键12-30KJ/mol-1
二硫键210KJ/mol-1
第5页/共53页
二、蛋白质结构中影响稳定性的重要因素
(一)氢键:
氢键在稳定蛋白质的结构中起着极其重要的作用,多肽主链上的羰基和酰***基之间形成的氢键是稳定蛋白质二级结构的主要作用力,另外,氢键还可以在侧链与侧链、侧链与介质水、主链肽基与侧链或主链肽基与水之间形成。
大多数蛋白质分子所采取的折叠策略是使主链肽基之间形成最大数目的分子内氢键(如α螺旋、β折叠),与此同时保持大多数能成氢键的侧链处于蛋白质分子的表面将与水结合。
第6页/共53页
二、蛋白质结构中影响稳定性的重要因素
(二)范德华力(范德华相互作用):
广义的范德华力包括3种较弱的作用力,即:
定向效应:发生在极性分子或极性基团之间,它是永久偶极间的静电相互作用,氢键可被认为属于这种范德华力;
诱导效应:发生在极性物质与非极性物质之间,这是永久性偶极与由它诱导而来的诱导偶极之间的静电相互作用;
分散效应:是在多数情况下起主要作用的范德华力,它是非极性分子或基团间仅有的一种范德华力,即狭义的范德华力,通常所说的范德华力指的就是这种作用力。它是瞬时偶极间的相互作用,偶极方向是瞬时变化的。
第7页/共53页
二、蛋白质结构中影响稳定性的重要因素
瞬时偶极是由于所在分子或基团中电子电荷密度的波动,即电子运动的不对称性造成的。瞬时偶极可以诱导周围的分子或基团产生诱导偶极,诱导偶极反过来又稳定了原来的偶极,因此它们之间产生了相互作用。
狭义的范德华力是一种很弱的作用力,而且随非共价键合原子与分子间距离(R)的6次方的倒数而变化。虽然就个别来说,范德华力是很弱的,但是范德华相互作用数量大,并且具有加和效应和位相效应(当分子或集团相同时,其瞬间偶极矩同位相,从而产生最大的相互作用),因此,就成为一种不可忽视的作用力。
第8页/共53页
二、蛋白质结构中影响稳定性的重要因素
(三)疏水作用:
水介质中球状蛋白质的折叠总是趋向于把疏水残基埋藏在分子的内部,这一现象称为疏水作用或疏水效应。它在稳定蛋白质的三级结构方面占有突出地位。疏水作用其实并不是疏水基团之间有什么吸引力的缘故,而是疏水基团或疏水侧链出自避开水的需要而被迫接近。当然,当疏水基团接近到等于范德华距离时,相互间将有弱的范德华引力,但这不是主要的。蛋白质溶液中的熵增加是疏水作用的主要动力。
疏水作用在生理温度范围内随温度升高而加强,但超过一定温度后(50-60℃,因侧链而异),又趋减弱,因为超过这个温度,疏水基团周围的水分子有序度降低,因而有利于疏水基团进入水中。
非极性溶剂、去污剂是破坏疏水作用的试剂,因此是变性剂。尿素和盐酸胍既能破坏氢键,又能破坏疏水作用,因此是强变性剂。
第9页/共53页
二、蛋白质结构中影响稳定性的重要因素
(四)盐键:
又称盐桥或离子键。它是正电荷与负电荷之间的一种静电相互作用。在生理pH下,蛋白质中的酸性氨基酸(天冬氨酸和谷氨酸)的侧链可离解成负离子,碱性氨基酸(赖氨酸、精氨酸和组氨酸)的侧链可离解成正离子。在多数情况下这些基团都分布在球状蛋白质分子表面,而与介质水分子发生电荷-偶极之间的相互作用,形成排列有序的水化层,这对稳定蛋白质的构象有着一定作用。
带电荷的侧链也在蛋白质分子内部出现,它们一般与其他基团形成强的氢键,但是偶尔也有少数带相反电荷的侧链在分子的疏水作用内部形成盐键。在疏水环境中,介电常数比在水中低,相反电荷间的吸引力相应增大。当荷电侧链从水中转移到分子内部时,它周围有序排列的水分子被释放到介质水中,因此,盐键的形成不仅是静电吸引而且也是熵增加的过程。升高温度,可以增加盐桥的稳定性。此外,盐键因加入非极性溶剂而加强,加入盐类而减弱。
第10页/共53页