文档介绍:用样本估计总体
学均数;培养收集、分析实验数据的能力. 通过对样本数据的分析处理感受到数是描述现实世界的重要手段,培养学生良好的学习品质.
重点:抽样调查的科学性及用样本去估计总体.
难点:用样本去估计总体.
★趣味感知
同学们是否记得上节课利用随机抽样得出的三个样本吗?(投影出示样本表格),我们就用这三个样本去考察这200名同学的成绩的平均值、标准差及成绩分布,想必同学们就会思考能用5个数据去考察200个数据的情况吗?今天我们就来研究这个问题.
★自主探究
探究1:整体感知
在教师引导下学生通过对亲自随机抽样实验得出的几个样本数据的整理分析,同时与总体的特征量的比较,让学生明白当样本中个体数目较大时一般是可以反映总体的特征,从而知道抽样调查是可靠的.
探究2:应用新知
1、为了解一批数据在各个范围内所占比例的大小,将这批数据分组,落在各个小组的个数叫做( )
A、频数 B、样本容量 C、频率 D、累计频数
2、在频率分布直方图中各校长方形的面积表示( )
A、落在相应各组内的数据的频数 B、相应各组的频率C、该样本所分成的组数 D、该样本的容量
3、为考察某种皮鞋的各种尺码的销售情况,以某天销售40双皮鞋为一个样本,按尺码分为5组,,第1,2,4组的频数为6,7,9,若第5组表示的是40~42的皮鞋,则售出的200双皮鞋中含40~42的皮鞋为( )双
A、50 B、40 C、20 D、30
4、从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,前三组是不超过80的其频数之和为20 ,,则抽取的样本的容量为( )
A、100 B、80 C、40 D、50
★合作交流、总结反思
告诉自己,有什么收获:
告诉同学,有什么温馨提示:
告诉老师,有什么困惑:
[来源:学科网][来源:学科网]
用样本估计总体
★自主检测、尝试提高
1、在10人中,有4人是学生,2人是干部,3人是工人,1人是农民,分数2/5是学生占总体的( )
A、频数 B、概率 C、频率 D、累积频率
2、一个容量为20 的样本数据,分组后组距与频数如下:
(10,20],2;(20,30],3;(30,40],4;(40,50],4;(60,70],2。则样本在区间(-,50]上的频率是( )[来源:Z*xx*]
A、5% B、25% C、50% D、70%
3、在抽查某产品尺寸的过程中,将其尺寸分成若干组,[a,b]是其中一组,抽查出的个体数在该组上的频率为m,该组上的直方图的高是h,则,[a-b]等于( )
A、hm B、 C、 D、与m,h无关
4、在已分组的数据中,每组的频数是指,每组的频率是指。
5