文档介绍:二次函数与距离最小值
,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1, -3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.
参考答案:
①
②BD: ;M(0,
③;
,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
B
A
O
y
x
参考答案:
①B(1,)
②
③AB:;C()
④;
3.(05深圳)已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(P与点A、C不重合)
(1)求点A、E的坐标;
(2)若y=过点A、E,求抛物线的解析式。
(3)连结PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由。
A
B
C
O
D
E
y
x
参考答案:
①A(1,2),E(0,)
②
③AC:;D′(4,);
BD′:;P(;周长为2+2.
,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
参考答案:
①.E(3,1),F(1,2);
②.P(0,3),
③.
,抛物线y=ax+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0)。
⑴求抛物线的解析式
⑵如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2。若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使点D、G、H、F四点所围成的四边形周长最小,若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理
参考答案:
①
②E(2,3); AE:;G(1,1) ; ; 2+2.
6. 如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1),B(-3,1),C(-3,0),O(0,0).将此矩形沿着过E(-,1)、F(-,0)的