文档介绍:摘要:在日常生活中,人们都有这样的经验,火车汽笛的音调,。它是由奥地利物理学家多普勒于1842年首先发现的。多普勒效应是波动过程的共同特征。光波也有多普勒效应。此效应在卫星定位、医学诊断、气象探测等许多领域有着广泛的应用。本文将对其原理及应用进行讨论。一、声波的多普勒效应及运用 当一列呜笛的火车经过某观察者时,他会发现火车汽笛的声调由高变低。这是因为声调的高低是由观察者耳膜振动频率的不同决定的,如果频率高,听起来声调就高,反之听起来声调就低,这就是声波的多普勒效应。当火车以恒定速度驶近观察者时,汽笛发出的声波在空气中的传播结果是波长缩短。因此,在一定时间间隔内进入人耳的声波频率就增加了,这就是观察感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大、频率变低,因此听起来就显得低沉。 定量分析可得观测到的波的频率f'=(v+u)f/(v-w),式中w为波源相对于介质的运动速度、u为观察者相对于介质的速度、v表示波在静止介质中的传播速度、f表示波源的固有频率。当观察者朝波源运动时,u取正;当观察者背离波源运动时,u取负。当波源朝观察者运动时,w取负;当波源背离观察者运动时,w取正。从上式易知,当观察者与声源相互靠近时,f'>f;当观察者与声源相互远离时f'<f 。 近年来,一种超声脉冲多普勒血流测量技术在临床医学上开始广泛应用。当声源或反射界面移动时,所发射和散射的超声波频率会发生变化。比如,当红细胞流经心脏大血管时,从其表面散射的超声波频率发生改变,这种频率偏移可以指示血流的方向和速度。如红细胞朝向探头时,根据多普勒原理,反射的声频提高,如红细胞离开探头时,反射的声频则减小。将超声脉冲多普勒技术用于心脏研究,可以估计血流的血液动力学特征,如血流方向和血流性质等。 从20世纪60年代开始,利用多普勒效应和激光的相干性,激光多普勒血流测量技术广泛应用于血流信息检测及生物医学等方面。二、光波的多普勒效应及运用 具有波动性的光(实际上就是电磁波)也具有多普勒效应。1848年,法国物理学家斐索(1819-1896)独立地对来自恒星的光波长偏移做了解释,提出利用这种效应测量恒星相对速度的办法,因此光的多普勒效应又被称为多普勒-斐索效应。光波与声波的不同之处在于,声波的频率变化表现为声调的改变,光波频率的变化则使人感觉到颜色的变化。如果恒星远离我们而去,则光的谱线就向红光方向移动,称为红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移。 20世纪20年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,首先发现了光谱的红移,认识到旋涡星云正快速地远离地球。1929年,哈勃根据光谱红移总结出著名的哈勃定律:星系的远离速度v与距离r成正比,即v=Hr,H为哈勃常数。根据哈勃定律和后来更多天体红移的测定,人们相信宇宙在很长时间内一直在膨胀,物质密度一直在变小。由此推知,宇宙结构在某一时刻前是不存在的。1948年伽莫夫和他的同事们