文档介绍:教学目标(一)知识认知要求三角形的内角和定理的证明.(二)能力训练要求掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力.(三)情感与价值观要求通过新颖、有趣的实际问题,、巧设现实情境,引入新课大家来看一机器零件(投影)为什么铣刀偏转35°角,就能得到55°的燕尾槽底角呢?二、讲授新课为了回答这个问题,先观察如下的实验(电脑实验)用橡皮筋构成△ABC,其中顶点B、C为定点,A为动点,放松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变化时所形成的一系列的三角形:△A1BC、△A2BC、△A3BC……其内角会产生怎样的变化呢?当点A离BC越来越近时,∠A越来越接近180°,而其他两角越来越接近于0°.,最大的内角有没有等于或大于180°的?三角形的最大内角不会大于或等于180°.看实验:当点A远离BC时,∠A越来越趋近于0°,而AB与AC逐渐趋向平行,这时,∠B、∠∠B+∠C→180°.猜一猜:三角形的内角和可能是多少?这一猜测是否准确呢?我们曾做过如下实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果.(1)(2)(3)(4)实验2:将纸片三角形三顶角剪下,:我们猜对了!,并不一定正确、可靠,?,我把它们重叠固定在黑板上,然后把三角形ABC的上层∠B剥下来,沿BC的方向平移到∠ECD处固定,再剥下上层的∠A,把它倒置于∠C与∠ECD之间的空隙∠,∠A与∠ACE能重合吗?这样我们就可以证明了:三角形的内角和等于180°.接下来同学们来证明:三角形的内角和等于180°,如图,△:∠A+∠B+∠C=180°证明:作BC的延长线CD,过点C作射线CE∥∠ACE=∠A(两直线平行,内错角相等)∠ECD=∠B(两直线平行,同位角相等)∵∠ACB+∠ACE+∠ECD=180°∴∠A+∠B+∠ACB=180°(等量代换)即:∠A+∠B+∠C=180°.通过推理的过程,得证了命题:三角形的内角和等于180°是真命题,:,小明的想法是把三个角“凑”到A处,他过点A作直线PQ∥BC.(如图)他的想法可行吗?:∵PQ∥BC(已作)∴∠PAB=∠B(两直线平行,内错角相等)∠QAC=∠C(两直线平行,内错角相等)∵∠PAB+∠BAC+∠QAC=180°∴∠B+∠BAC+∠C=180°(等量代换):作CA的延长线AD,过点A作∠DAE=∠C也可以在三角形的一边上任取一点,然后过这一点分别作另外两边的平行线,:如图,在BC上任取一点D,过点D分别作DE∥AB交AC于E,DF∥A