1 / 8
文档名称:

蒙特卡洛算法.doc

格式:doc   大小:88KB   页数:8页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

蒙特卡洛算法.doc

上传人:feng1964101 2019/9/25 文件大小:88 KB

下载得到文件列表

蒙特卡洛算法.doc

文档介绍

文档介绍:根据我的理解简单的说就是以部分估计整体,利用随机数来解决问题的方法称为蒙特卡罗算法,记得课本上讲了个例题:在数值积分法中,我们利用求单位圆的1/4的面积来求得Pi/4从而得到Pi。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分(若能画图就好了!)只要能求出扇行面积S1在正方形面积S中占的比例K=S1/S就立即能得到S1,?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m与所投点的总数n的比m/n作为k的近似值。怎样实现这样的随机投点呢?任何一款计算机语言都有这种功能,能够产生在区间[0,1]内均匀分布的随机数,在mathematica中,产生区间[0,1]内均匀分布随机数的语句是Random[]产生两个这样的随机数x,y,则以(x,y)为坐标的点就是单位正方形内的一点P,它落在正方形内每个位置的机会均等,P落在扇形内的充要条件是x^2+y^2<==10000;p=();Do[m=0;Do[x=Random[];y=Random[];If[x^2+y^2<=1,m++],{k,1,n}];AppendTo[p,N[4m/n]],{t,1,10}];Print[p];Sum[p[[t]],{t,1,10}]/10注:以上语句的功能是:n=10000,每次投10000个点得出Pi的近似值存放到数组p中;一共做10次得到10个近似值,通过语句Print[p]将这10个近似值全部显示出来观察。最后再求这10个近似值的平均值,相当于随机投点次得到的近似值。蒙特卡罗(MonteCarlo)方法,或称计算机随机模拟方法,是一种基于"随机数"的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的"曼哈顿计划"。该计划的主持人之一、数学家冯?诺伊曼用驰名世界的赌城-摩纳哥的MonteCarlo-来命名这种方法,为它蒙上了一层神秘色彩。MonteCarlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能。考虑平面上的一个边长为1的正方形及其内部的一个形状不规则的"图形",如何求出这个"图形"的面积呢?MonteCarlo方法是这样一种"随机化"的方法:向该正方形"随机地"投掷N个点落于"图形"内,则该"图形"的面积近似为M/N。可用民意测验来作一个不严格的比喻。民意测验的人不是征询每一个登记选民的意见,而是通过对选民进行小规模的抽样调查来确定可能的优胜者。其基本思想是一样的。科技计算中的问题比这要复杂得多。比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千。对这类问题,难度随维数的增加呈指数增长,这就是所谓的"维数的灾难"(CourseDimensionality),传统的数值方法难以对付(即使使用速度最快的计算机)。MonteCarlo方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数。以前那