文档介绍:数学史话—线性代数发展史简介一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。傅鹰数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。,发现新的定理和技巧是一回事;而以一种能使其他人也能掌握的方式来阐述这些定理和技巧则又是一回事。学习那些伟大的数学家们的思想,使今天的学生能够看到某些论题在过去是怎样被处理的。、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时是影响政治家和神学家的学说。、了解数学史的重要意义数学是人类文明的一个重要组成部分,是一项非常重要的人类活动。与其他文化一样,数学科学是几千年来人类智慧的结晶。在学习数学时,我们基本是通过学习教材来认识这门学科的。教材是将历史上的数学材料按照一定的逻辑结构和学习要求加以重组、取舍编撰而成,因此,数学教材往往舍去了许多数学概念和方法形成的实际背景、演化历程以及导致其演化的各种因素。由于数学发展的实际情况与教材的编写体系有着许多不同,所以,对数学教材的学习,往往难以了解数学的全貌和数学思想产生的过程。正因为如此,许多人往往把数学当成了枯燥的符号、无源的死水,学了很多却理解得很少。数学和任何一门科学一样,有着自身发展的丰富历史,是积累性的科学。数学的发展历史展示了人类追求理想和美好生活的力量,历史上数学家的成果、业绩和品德无不闪耀着人类思想的光辉,照亮着人类社会发展和进步的历程。通过了解一些数学史,可以使我们了解数学科学发生、发展的规律,通过追溯数学概念、思想和方法的演变和发展过程,探究数学科学发展的规律和文化内涵,帮助我们认识数学科学与人类社会发展的互动关系以及数学概念和方法的重要意义。二、代数学的历史发展情况数学发展到今天,已经成为科学世界中拥有一百多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。本节简要介绍一下代数学的历史发展情况。“代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khwarizmī,约780-850)一本代数教程,书名的直译为《还原与对消的计算概要》.其书名中的al-jabr这个词意为“还原”,它所指的意思是把方程式一边的负项移到方程另一端“还原”为正项;al-muqabala意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项。在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文词“algebra”就是阿拉伯文“al-jabr”的讹用。在数学史上,阿拉伯伊斯兰数学家在代数领域的贡献广为人知。他们在巴比伦人取得的成果基础上结合经典的希腊几何遗产发展了代数学。他们最重要的贡献是“除非能够证明一个数学问题的解是成立的,否则便不能认为这个问题已经被解答”。伊斯兰数学家通常是用几何来证明代数规则的合理性。代数学家阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来。一般认为他生于花拉子模(Khwarizm),位于咸海南部阿姆河的下游,现在是乌兹别克斯坦和土库曼斯坦的辖地,境内的人以花拉子米为姓。另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī)。祖先是花拉子模人。花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家。东部地区的总督马蒙(al-Ma’mūn公元786—833年)曾在默夫召见过花拉子米。公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作。公元830年,马蒙在巴格达创办了著名的“智慧馆”(Baytal-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一。马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世。花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期。花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域。他撰写了许多重要的科学著作。在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》。1859年,我国数学家李善兰首次把“algebra”译成“代数”。后来清代学者华蘅芳和英国人傅兰