1 / 26
文档名称:

大学高等数学知识点样稿.doc

格式:doc   大小:1,817KB   页数:26页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

大学高等数学知识点样稿.doc

上传人:非学无以广才 2020/11/18 文件大小:1.77 MB

下载得到文件列表

大学高等数学知识点样稿.doc

文档介绍

文档介绍:大学高等数学知识点整理
公式,使用方法合集
极限和连续
一. 数列函数:
1. 类型:
(1)数列: *; *
(2)初等函数:
(3)分段函数: *; *;*
(4)复合(含)函数:
(5)隐式(方程):
(6)参式(数一,二):
(7)变限积分函数:
(8)级数和函数(数一,三):
2. 特征(几何):
(1)单调性和有界性(判别); (单调定号)
(2)奇偶性和周期性(应用).
3. 反函数和直接函数:
二. 极限性质:
1. 类型: *; *(含); *(含)
2. 无穷小和无穷大(注: 无穷量):
3. 未定型:
4. 性质: *有界性, *保号性, *归并性
三. 常见结论:
, , ,
, , , ,
,
四. 必备公式:
1. 等价无穷小: 当初,
; ; ;
; ; ;
;
2. 泰勒公式:
(1);
(2);
(3);
(4);
(5).
五. 常规方法:
前提: (1)正确判定(其它如:); (2)变量代换(如:)
1. 抓大弃小,
2. 无穷小和有界量乘积 () (注:)
3. 处理(其它如:)
4. 左右极限(包含):
(1); (2); ; (3)分段函数: , ,
5. 无穷小等价替换(因式中无穷小)(注: 非零因子)
6. 洛必达法则
(1)先”处理”,后法则(最终方法); (注意对比: 和)
(2)幂指型处理: (如: )
(3)含变限积分;
(4)不能用和不便用
7. 泰勒公式(皮亚诺余项): 处理和式中无穷小
8. 极限函数: (分段函数)
六. 很手段
1. 收敛准则:
(1)
(2)双边夹: *, *
(3)单边挤: * * *
2. 导数定义(洛必达?):
3. 积分和: ,
4. 中值定理:
5. 级数和(数一三):
(1)收敛, (如) (2),
(3)和同敛散
七. 常见应用:
1. 无穷小比较(等价,阶): *
(1)
(2)
2. 渐近线(含斜):
(1)
(2),()
3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, 连续性)
八. 上连续函数性质
1. 连通性: (注:, “平均”值:)
2. 介值定理: (附: 达布定理)
(1)零点存在定理: (根个数);
(2).
第二讲:导数及应用(一元)(含中值定理)
一. 基础概念:
1. 差商和导数: ;
(1) (注:连续))
(2)左右导: ;
(3)可导和连续; (在处, 连续不可导; 可导)
2. 微分和导数:
(1)可微可导; (2)比较和大小比较(图示);
二. 求导准备:
1. 基础初等函数求导公式; (注: )
2. 法则: (1)四则运算; (2)复正当则; (3)反函数
三. 各类求导(方法步骤):
1. 定义导: (1)和; (2)分段函数左右导; (3)
(注: , 求:及连续性)
2. 初等导(公式加法则):
(1), 求:(图形题);
(2), 求: (注: )
(3),求及 (待定系数)
3. 隐式()导:
(1)存在定理;
(2)微分法(一阶微分形式不变性).
(3)对数求导法.
4. 参式导(数一,二): , 求:
5. 高阶导公式:
; ;
;

注: 和泰勒展式:
四. 各类应用:
1. 斜率和切线(法线); (区分: 上点和过点切线)
2. 物理: (相对)改变率速度;
3. 曲率(数一二): (曲率半径, 曲