文档介绍:第五章多序列对位排列分析和系谱分析
双序列比对是序列分析的基础。与序列两两比对不一样,序列多重比对(Multiple Alignment)的目标是发现多条序列的共性。如果说序列两两比对主要用于建立两条序列的同源关系和推测它们的结构、功能,那么,同时比对一组序列对于研究分子结构、功能及进化关系更为有用。例如,某些在生物学上有重要意义的相似性只能通过将多个序列对比排列起来才能识别。同样,只有在多序列比对之后,才能发现与结构域或功能相关的保守序列片段。对于一系列同源蛋白质,人们希望研究隐含在蛋白质序列中的系统发育的关系,以便更好地理解这些蛋白质的进化。在实际研究中,生物学家并不是仅仅分析单个蛋白质,而是更着重于研究蛋白质之间的关系,研究一个家族中的相关蛋白质,研究相关蛋白质序列中的保守区域,进而分析蛋白质的结构和功能。序列两两比对往往不能满足这样的需要,难以发现多个序列的共性,必须同时比对多条同源序列。目前对多序列比对的研究还在不断前进中,现有的大多数算法都基于渐进的比对的思想,在序列两两比对的基础上逐步优化多序列比对的结果。通过序列的多重比对,可以得到一个序列家族的序列特征。当给定一个新序列时,根据序列特征,可以判断这个序列是否属于该家族。对于多序列比对,现有的大多数算法都基于渐进比对的思想,在序列两两比对的基础上逐步优化多序列比对的结果。进行多序列比对后,可以对比对结果进行进一步处理,例如构建序列的特征模式,将序列聚类,构建分子进化树等。
多序列比对的意义
多序列比对有时用来区分一组序列之间的差异,但其主要用于描述一组序列之间的相似性关系,以便对一个基因家族的特征有一个简明扼要的了解。与双序列比对一样,多序列比对的方法建立在某个数学或生物学模型之上。因此,正如我们不能对双序列比对的结果得出“正确或错误”的简单结论一样,多序列比对的结果也没有绝对正确和绝对错误之分,而只能认为所使用的模型在多大程度上反映了序列之间的相似性关系以及它们的生物学特征。显然,多序列比对需要使用许多专门的分析工具。除了一些已经广泛使用并仍在不但改进的多序列计算机程序外,还需要有一个开发方便实用的多序列比对手工编辑工具。可以从多个不同角度出发构建多序列比对模型。这里,主要指建立比对模型的生物学基础,而不仅是具体的比对方法,如自动比对或手动比对等。目前,构建多序列比对模型的方法大体可以分为两大类。第一类是基于氨基酸残基的相似性,如物化性质、残基之间的可突变性等。另一类方法则主要利用蛋白质分子的二级结构和三级结构信息,也就是说根据序列的高级结构特征确定比对结果。显然,这两种方法所得结果可能有很大差别。一般说来,很难断定哪种方法所得结果一定正确,应该说,它们从不同角度反映蛋白质序列中所包含的生物学信息。基于序列信息和基于结构信息的比对都是非常重要的比对模型,但它们都有不可避免的局限性,因为这两种方法都不能完全反映蛋白质分子所携带的全部信息。我们知道,蛋白质序列是经过DNA 序列转录翻译得到的。从信息论的角度看,它应该与DNA 分子所携带的信息更为“接近”。而蛋白质结构除了序列本身带来的信息外,还包括经过翻译后加工修饰所增加的结构信息,包括残基的修饰,分子间的相互作用等,最终形成稳定的天然蛋白质结构。因此,这也是对完全基于序列数据比对方法批评的主要原因。显然,如果能够利用结构