文档介绍:§1-2  晶棱和晶面指数
这一节主要是讨论表示利用晶格的概念来表示晶棱和晶面的方法。
晶棱与晶向:由于晶体结构的周期性,晶格中各格点的周围情况都是一样的,因此通过任意两个格点作一条直线,则在直线上所有格点的周期相同,这样的直线称为晶棱。再通过其它格点还可以做许多与此晶棱平行的直线,这些平行直线组成一个晶棱族,如图1-8所示。同一晶棱族的方向相同,而且能把所有点子包括无遗。此外,通过同一格点还可沿不同方向作无限多晶棱,如图1-9中通过O的晶棱有1、2、3、4、5等等,其中每一个晶棱都有一组晶棱与之对应,就是说,可以做无限多个晶棱族,各族晶棱可以通过取向不同而加以区别。晶棱的取向也简称晶向。只要表出了晶向,该组晶棱的特点也就知道了。
图1-8 一族晶棱示意图
 
图1-9 通过格点O的部分晶棱示意图
晶向的表示方法:取格点O为原点,a、b、c为晶胞的三个基矢,则其它任一格点A的位置矢量为
式中l1、l2、l3为整数(或有理数)。取l1、l2、l3的互质比,即l1:l2:l3来表示晶棱OA的方向,通常不直接用比例记号,该用方括号[l1l2l3]表示。例如在图1-9中,晶棱1上A点为l1=1,l2=1,l3=0;B点为l1=2,l2=2,l3=0;比值为:l1:l2:l3=1:1:0=2:2:0,由此可得晶棱1的方向为[110]。同理可得晶棱2的方向为[320],晶棱4的方向为[30],其中记号“”代表“-1”。三个晶轴a、b、c的方向分别为[100]、[010]、[001](c轴与图平面垂直,未画出)。
晶面与晶面指数:晶格中,还可以从各个方向上划分成无限多平面,即晶面族,如图1-10所示。同一族晶面中,彼此距离相等,方向相同,格点在晶面上的分布也相同。晶体的表面也是晶面,通常应该是原子面密度比较大的面。现在问题是如何表示这些晶面族的方向。 
图1-10 部分晶面族示意图
 
从立体几何中知道,要描述一个平面的方向,就是表示出这个平面在三个坐标轴上的截距。描写晶面方向的方法也是如此。选取与晶轴平行的基矢a、b、c为坐标轴。假设有一个晶面与此三个坐标轴相交于M1、M2和M3三点(如图1-11所示),截距分别等于:OM1=ra,OM2=sb,OM3=tc,例如在图1-11中晶面的三个截距分别是r=3,s=2,t=1。因为一族晶面一定包含了所有格点,所以截距的长度是一组有理数,或者说截距的倍数是晶格常数的整数倍,如果晶面与某一坐标轴平行,则晶面在此坐标轴的截距为无限大(例如,若晶面与b轴平行,则s=∞)。为了避免使用无限大,常采用截距倒数的互质整数比,即用
来表示晶面的方向。通常不用比例记号,该用圆括号(hkl)来表示晶面的方向。(hkl)称为晶面指数,或称为米勒(Miller)指数。如图1-11中的晶面指数为,
即M1M2M3面的米勒指数为(236)。有时也称M1M2M3面为(236)晶面。
图1-11 晶面在坐标轴上的截距
 
图1-12画出了用米勒指数表示的一些晶面,在此图中,c轴与图面垂直。从图中还可以看出米勒指数越小的晶面,