文档介绍:第五章统计量及其分布
§ 总体与样本
§ 样本数据的整理与显示
§ 统计量及其分布
§ 三大抽样分布
§ 充分统计量
某公司要采购一批产品,每件产品不 是合格品就是不合格品,但该批产品总有一 个不合格品率 p 。由此,若从该批产品中随 机抽取一件,用 x 表示这一批产品的不合格 数,不难看出 x 服从一个二点分布b(1 , p), 但分布中的参数 p 是不知道的。一些问题:
p 的大小如何;
p 大概落在什么范围内;
能否认为 p 满足设定要求
(如 p )。
§ 总体与个体
总体的三层含义:
研究对象的全体;
数据;
分布
考察某厂的产品质量,以0记合格品,以1记
不合格品,则
总体= {该厂生产的全部合格品与不合格品}
= {由0或1组成的一堆数}
若以 p 表示这堆数中1的比例(不合格品率),则该
总体可由一个二点分布表示:
X 0 1
P 1 p p
比如:两个生产同类产品的工厂的产品的总体 分布:
X
0
1
p
X
0
1
p
在二十世纪七十年代后期,美国消费
者购买日产SONY彩电的热情高于购买美产
SONY彩电,原因何在?
1979年4月17日日本《朝日新闻》刊登调查报
告指出N(m, (5/3)2),日产SONY彩电的彩色浓
度服从正态分布,而美产SONY彩电的彩色浓
度服从(m5 , m+5)上的均匀分布。
原因在于总体的差异上!
SONY彩电彩色浓度分布图
等级 I II III IV
美产 0
日产
各等级彩电的比例(%)
样本
样品、样本、样本量:
样本具有两重性
一方面,由于样本是从总体中随机抽取的,抽
取前无法预知它们的数值,因此,样本是随机
变量,用大写字母 X1, X2, …, Xn 表示;
另一方面,样本在抽取以后经观测就有确定的
观测值,因此,样本又是一组数值。此时用小
写字母 x1, x2, …, xn 表示是恰当的。
简单起见,无论是样本还是其观测值,样本一般均用 x1, x2,… xn 表示,应能从上下文中加以区别。