1 / 4
文档名称:

最新数学知识 等号与不等号.doc

格式:doc   大小:24KB   页数:4页
下载后只包含 1 个 DOC 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

最新数学知识 等号与不等号.doc

上传人:sunny 2021/11/24 文件大小:24 KB

下载得到文件列表

最新数学知识 等号与不等号.doc

文档介绍

文档介绍:数学知识 等号与不等号
第 3 页
数学知识 等号与不等号
  等号与不等号Ec
等号与不等号的发明权属于英国人。
1557年,数学家雷科德在他的《智慧的激励》一书中,首先把“=”作为等号,他说:“最相像的两件东西是两条平行线,所以这两条线应该用来表示相等。”他的书《智慧的激励》也因此引起了人们极大的兴趣。
在数学中,等号“=”既可表示两个数相等,也可以表示两个式子相等,但无论何种相等,它们都遵循以下规则:
(1)若a=b,那么对于任何数c,有a±c=b±c;
(2)若a=b,那么b=a;
(3)若a=b,b=c,那么a=c;
(4)若a=b,那么对于任何数c,有ac=bc。
人们起初用“”和“”。表示大于和小于,英国人乌特勒首次在他的《数学入门》一书中使用了它们。另一英国数学家哈里奥特引入了现在的两个符号:>、<。他在自己的书中明确地写道:“a>b表示a量大于b量,a<b表示a量小于b量。”
不等号在数学中有着普遍应用,在使用它们时,应遵循如下原则(a、b为实数)
(1)若a>b,则b<a
(2)若a>b,那么对于任何实数c,有a±c>b±c;
第 3 页
(3)若a>b,c为大于零的实数,那么ac>bc;
(4)若a>b,c为小于零的实数,那么ac<bc;
(5)若a>b,b>c,那么a>c。