1 / 24
文档名称:

果蔬采摘机械人的研究进展.docx

格式:docx   大小:4,769KB   页数:24页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

果蔬采摘机械人的研究进展.docx

上传人:艾米 2022/4/9 文件大小:4.66 MB

下载得到文件列表

果蔬采摘机械人的研究进展.docx

文档介绍

文档介绍:果蔬采摘机械人的研究进展
摘要
综述了果蔬采摘机器人的国内外研究现状,介绍了目前大部分典型的果蔬采摘机器人的研究自由度机械手。用彩色摄像机作为视觉传感器,寻找和识别成熟果实,并采用双目视觉方法对果实进行定位,利用机械手的腕关节把果实拧下。移动系统采用4轮机构,可在垄间自动行走。该番茄采摘机器人采摘速度大约是15 s/个,成功率在70%左右。主要存在的问题是当成熟番茄的位置处于叶茎相对茂密的地方时,机械手无法避开叶茎障碍物完成采摘。
在 2004年 2月10 日美国加利福尼亚州图莱里开幕的世界农业博览会上,美国加利福尼亚西红柿机械公司展出两台全自动西红柿采摘机,如图 3所示。如果西红柿单位面积产量有保证的话,、 1 吨多西红柿,1小时可采摘70 吨西红柿。这种西红柿采摘机首先将西红柿连枝带叶割倒后卷入分选仓,仓内能识别红色的光谱分选设备挑选出红色的西红柿,并将其通过输送带送入随行卡车的货舱内,然后将为成熟的西红柿连同枝叶一道粉碎,喷撒在田里作肥料。

图1 日本的西红柿采摘机器人
3
图2 美国的西红柿采摘机器人
1. 1. 2 草莓采摘机器人
日本近藤等人研制出一种气吸式草莓采摘机器人(见图3)。实验证明利用真空设备可以有效地补偿摄像机检测果实的位置误差,并且最大程度减少了跟果实娇嫩表皮的接触。该机器人对成熟果实的采摘成功率达到100%。但是问题是一些未成熟的果实也会随着目标果实被吸起,因此需要在控制真空吸力的强度等方面进行改进。日本国家农业机构研究所和SI Seiko公司于2009年联合研制出了能够自动识别并采摘成熟草莓果实的机器人样机。目前国内外草莓采摘机器人研究中尚存在以下问题:①普遍采用多目机器视觉系统,结构复杂,成本较高。②整体机构庞大,工作过程中占用较多行走空间,影响种植密度。③面向我国国内草莓生长环境特点的采摘机器人研究较少,尚无样机问世。
图3 日本的草莓采摘机器人
4

日本的近藤直等研制的黄瓜采摘机器人,采用三菱MITSUBISHIRV-E2型六自由度工业机器人,利用CCD摄像机,根据黄瓜比其叶茎对红外光的反射率高的原理来识别黄瓜叶茎(图4)。黄瓜、果梗的连接与番茄不同,采用剪断方法,先把黄瓜抓住,用接近觉传感器找出柄,然后剪断,采摘速度为16 s/个。由于黄瓜是长条形,受到茎叶的影响更大,所以采摘的成功率较低,大约60%。同样,需要改进该机器人机器手的结构、采摘工作方式和避障规划功能,以提高采摘成功率,提高采摘速度。1996年,荷兰农业环境工程研究所(IMAG)研制出一种多功能黄瓜收获机器人(图5)。该研究在荷兰2 h㎡的温室里进行,黄瓜为高拉线缠绕方式吊挂生长。该机器人利用近红外视觉系统辨识黄瓜果实,并探测其位置。机械手只收获成熟黄瓜。末端执行器由手爪和切割器构成。机械手有7个自由度,采用三菱(Mitsubishi) RV-E2六自由度机械手。该机器人视觉系统的黄瓜检测效率大于95%,采摘成功率约80%,采摘速度约为54 s/个,在实验用温室中作业效果良好。但由于采收时间过长,不能满足商用要求。
图4 日本的黄瓜采摘机器人 图5 荷兰的黄瓜采摘机器人
多功能葡萄采摘机器人
日本冈山大学研制的葡萄采摘机器人(见图6)采用5自由度的极坐标机械手。视觉传感器一般采用彩色摄像机。该机器人的特点是,为了提高使用效率,开发了多种末端执行器,除了能完成采摘作业,更换其他的末端执行器还可以完成喷雾、套袋和修剪枝叶等作业。
5

日本国立农业研究中心的Murakami等研制了甘蓝采摘机器人,由极坐标机械手、4个手指的末端执行器、履带式行走装置和CCD机器视觉系统组成,整个系统采用液压驱动(图7)。系统利用人工神经网络(NN算法)提取果实的二值图像,采用模板匹配的方法识别合格的甘蓝。试验表明,采摘的成功率为43%,工作速度为55 s/个。影响成功率的主要原因是光照条件的不稳定、超声波测距传感器的误差、叶子的遮挡以及机械故障等。
蘑菇采摘机器人
英国Silsoe研究院研制了蘑菇采摘机器人(图8)。它可以自动测量蘑菇的位置、大小,并且选择性地采摘和修剪。它的机械手包括2个气动移动关节和1个步进电机驱动的旋转关节;末端执行器是带有软衬垫的吸引器;视觉传感器采用TV摄像头,安装在顶部用来确定蘑菇的位置和大小。采摘成功率在7