1 / 15
文档名称:

3高中数学三角函数知识点总结.docx

格式:docx   大小:425KB   页数:15页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

3高中数学三角函数知识点总结.docx

上传人:1485173816 2022/5/17 文件大小:425 KB

下载得到文件列表

3高中数学三角函数知识点总结.docx

文档介绍

文档介绍:1 / 15
高考三角函数

sin= 0
cos= 1
tan= 0
sin3=
cos3=
tan3=
sin=
cos=
tan=1
sin6=
cos6=
tan6=
sinos(A+B)=-cosC;tan(A+B)=-tanC。;
四.【典例解析】
题型1:正、余弦定理
(2009岳阳一中第四次月考).已知△中,,,,,,则 ( )
A.. B . C. D. 或
答案 C
例1.(1)在中,已知,,cm,解三角形;
(2)在中,已知cm,cm,,解三角形(角度精确到,边长精确到1cm)。
解析:(1)根据三角形内角和定理,

根据正弦定理,
6 / 15

根据正弦定理,
(2)根据正弦定理,

因为<<,所以,或
①当时, ,
②当时,

点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器
例2.(1)在ABC中,已知,,,求b及A;
(2)在ABC中,已知,,,解三角形
解析:(1)∵
=cos
=
=

求可以利用余弦定理,也可以利用正弦定理:
解法一:∵cos ∴
解法二:∵sin
又∵><∴<,即<<

(2)由余弦定理的推论得:
7 / 15
cos

cos

点评:应用余弦定理时解法二应注意确定A的取值范围。
题型2:三角形面积
例3.在中,,,,求的值和的面积。
解法一:先解三角方程,求出角A的值。

又,
,


解法二:由计算它的对偶关系式的值。

8 / 15

,

  ① + ② 得  。
  ① - ② 得  。
从而 。
以下解法略去。
点评:本小题主要考查三角恒等变形、三角形面积公式等基本知识,着重数学考查运算能力,是一道三角的基础试题。两种解法比较起来,你认为哪一种解法比较简单呢?
例4.(2009湖南卷文)在锐角中,则的值等于 ,
的取值范围为 .
答案  2
解析 设由正弦定理得
由锐角得,
又,故,
9 / 15
例5.(2009浙江理)(本题满分14分)在中,角所对的边分别为,且满足,.
(I)求的面积; (II)若,求的值.
解 (1)因为,,又由
得,
(2)对于,又,或,由余弦定理得

例6.(2009全国卷Ⅰ理)在中,内角A、B、C的对边长分别为、、,已知,且 求b
分析::此题事实上比较简单,(1)左侧是二次的右侧是一次的,学生总感觉用余弦定理不好处理,而对已知条件(2) 过多的关注两角和和差的正弦公式,甚至有的学生还想用现在已经不再考的积化和差,导致找不到突破口而失分.
解法一:在中则由正弦定理及余弦定理有:化简并整理得:..
解法二:由余弦定理得: .又,.
所以 ①
又,
,即
11 / 15
由正弦定理得,故 ②
由①,②解得.
评析:、:两纲中明确不再考的知识和方法了解就行,不必强化训练
题型4:三角形中求值问题
例7.的三个内角为,求当A为何值时,取得最大值,并求出这个最大值。
解析:由A+B+C=π,得=-,所以有cos =sin。
cosA+2cos =cosA+2sin =1-2sin2 + 2sin=-2(sin - )2+ ;
当sin = ,即A=时, cosA+2cos取得最大值为。
点评:运用三角恒等式简化三角因式最终转化为关于一个角的三角函数的形式,通过三角函数的性质求得结果。
例8.(2009浙江文)(本题满分14分)在中,角所对的边分别为,且满足,.
(I)求的面积; (II)若,求的值.
解(Ⅰ)
又,,而,所以,所以的面积为:
(Ⅱ)由(Ⅰ)知,而,所以
所以
点评:本小题主要考察三角函数概念、同角三角函数的关系、两角和和差的三角函数的公式以及倍角公式,考察应用、分析和计算能力
题型5:三角形中的三角恒等变换问题
例9.在△ABC中,a、b、c