1 / 7
文档名称:

大学线性代数核心问题分析.docx

格式:docx   大小:21KB   页数:7页
下载后只包含 1 个 DOCX 格式的文档,没有任何的图纸或源代码,查看文件列表

如果您已付费下载过本站文档,您可以点这里二次下载

分享

预览

大学线性代数核心问题分析.docx

上传人:文档百货 2022/7/21 文件大小:21 KB

下载得到文件列表

大学线性代数核心问题分析.docx

文档介绍

文档介绍:大学线性代数核心问题分析
大学线性代数核心问题分析
  线性代数是代数学的一个分支,今天数学界一致认它作为一门独立学科诞生于上世纪30年代,因为吸纳了系统的线性代数内容的著作是在这一时期产生的,如Van的矩阵、行列式、线性方程组一般为研究维向量空间所必须的表示工具、向量的线性相关性的判别工具)和未知向量的计算工具,从宏观讲它们独立于体系之外,从微观讲它们也是维向量空间的一些具体内容。而二次型仅仅是对称双线性函数的一个简单应用。


  第三:线性和线性问题
  “线性”这个数学名词在中学数学课程中,学生从未接触过。而这一课程是大学数学的基础课程,学生刚进入大学,对这一词汇的具体内容知之甚少。所以在学习之前,学生必须对什么是“线性”有所了解,在“线性代数”这一课程中有对于“线性”概念的明确介绍。这是学习线性代数要解决的第一个基本问题,即什么是“线性”。
  从整个数学全局来看线性代数,可将涉及到的数学问题分为两类:即线性问题和非线性问题。其中,对于线性问题的研究,历来有最完善的理论和最多的研究成果;并且,许多非线性问题往往也可以转化为线性问题解答。所以解决具体的数学问题时,首先应判断该问题是否属于线性问题,如果是线性问题该采用怎样的解决方法,如果不是线性问题,应考虑如何将其转化为线性问题。这是学习线性代数要解决的第二个基本问题:什么是“线性问题”,如何处理“线性问题”?


  了解了什么是“线性”、什么是“线性问题”后,离完成线性代数的教学目的还有很长一段距离。如今的高校教育,一味灌输给学生行列式、向量、矩阵、线性变换等空洞的数学定理,指导学生用这些理论来思考线性代数的基本结构、具体应用等问题。教师在教学线性代数问题时更是一味强调理论的选择与应用,却忽视了学生发现问题、分析问题、解决问题的能力的培养。
  第四:线性代数的研究对象
  稍微观察一下我们可以发现,中学的初等代数就是线性代数的前身,只是在其基础上的`进一步抽象化。初等代数研究的多是具体的问题,运用加减乘除的运算方法即可解决问题;线性代数中则引入了许多新的概念,如向量、向量空间、集合、空间、矩阵等等,问题展现的形式发生了变化,要想解决问题,我们的思维方式也应该发生变化。涉及到新概念的数学问题往往都很抽象,如向量指的是既有数值又有具体方向的量;向量空间是许多量组成的集合,这一集合中的元素全都符合特定的运算规则;集合是具有某种属性的事物的总和;矩阵理论则是一种更加抽象化的理论,因此我们的研究方法和思维方式都要随之进行改变。如初等代数中的基本运算法则性代数中经常会失效,线性代数的研究对象是向量运算、矩阵运算和线性变换,解决问题时,需要采用一种特殊的运算方法。
  综上所述,线性代数的学习中应重点培养两个方面的能力:
  一个是知识掌握的能力的培养。介绍知识时应坚持从易到难、循序渐进。先掌握好中学的运算法则,再慢慢学习向量、矩阵知识,之后学习线性变换,最后综合学习线性运算。学生经过中