文档介绍:二次根式
:式子(≥0)叫做二次根式。
:必须同时满足下列条件:
⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
:
(>0)
(<0)
0 (=0);
(1)()2= (≥0); (2)
:
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
=·(a≥0,b≥0); (b≥0,a>0).
(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
【典型例题】
1、概念与性质
例1下列各式1),
其中是二次根式的是_________(填序号).
例2、求下列二次根式中字母的取值范围
(1);(2)
例3、在根式1) ,最简二次根式是( )
) 2) ) 4) ) 3) ) 4)
例4、已知:
例5、(2009龙岩)已知数a,b,若=b-a,则(   )
A. a>b        B. a<b    C. a≥b           D. a≤b
2、二次根式的化简与计算
例1. 将根号外的a移到根号内,得(   )
A. ;   B. -;      C. -;      D.
例2. 把(a-b)化成最简二次根式
例3、计算:
例4、先化简,再求值:
,其中a=,b=.
例5、如图,实数、在数轴上的位置,化简:
3、在实数范围内分解因式
例. 在实数范围内分解因式。(1);                (2)
(1)、根式变形法
当时,①如果,则;②如果,则。
例1、比较与的大小。
解:== ==
(2)、平方法
当时,①如果,则;②如果,则。
例2、比较与的大小。
(3)、分母有理化法
通过分母有理化,利用分子的大小来比较。
例3、比较与的大小。
解:=== =
(4)、分子有理化法
通过分子有理化,利用分母的大小来比较。
例4、比较与的大小。
(5)、倒数法
例5、比较与的大小。
(6)、媒介传递法
适当选择介于两个数之间的媒介值,利用传递性进行比较。
例6、比较与的大小。
(7)、作差比较法
在对两数比较大小时,经常运用如下性质:
①;②
例7、比较与的大小。
(8)、求商比较法
它运用如下性质:当a>0,b>0时,则:
①; ②
例8、比较与的大小。
5、规律性问题
例1. 观察下列各式及其验证过程:
  , 验证:;
验证:.
(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果,并进行验证;
(2)针对上述各