文档介绍:该【2023届山东省东营市胜利第一中学数学九年级第一学期期末检测试题含解析 】是由【相惜】上传分享,文档一共【21】页,该文档可以免费在线阅读,需要了解更多关于【2023届山东省东营市胜利第一中学数学九年级第一学期期末检测试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项:
,考生务必将自己的姓名、准考证号填写在答题卡上。
,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
()
A. B. C. D.
(x>100)元出售,每天可销售(200﹣x)件,若想获得最大利润,则x应定为( )
,在△ABC中,∠A=90°.若AB=12,AC=5,则cosC的值为()
A. B. C. D.
,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()
° ° ° °
,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,CF为半径作圆,D是⊙C上一动点,E是BD的中点,当AE最大时,BD的长为()
A. B.
,矩形中,,交于点,,分别为,,,则的度数为()
A. B. C. D.
△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为()
,是随机事件的是( )
,这两个圆是等圆 B.⊙O的半径为5,OP=3,点P在⊙O外
、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是( )
,那么B转盘转出蓝色的可能性变小了
,游戏者配成紫色的概率不同
,那么的值为()
A. B. C. D.
二、填空题(每小题3分,共24分)
,其部分图象如图所示,下列说法中:①;②;③;④当时,,正确的是_____(填写序号).
、乙两同学在最近的5次数学测验中数学成绩的方差分别为甲,乙,则数学成绩比较稳定的同学是____________
.
,其相似比为2:3,则他们面积的比为__________.
,通过多次摸球试验后,发现摸到白球的概率约为30%,估计袋中白球有个.
﹣x+2=0有两个不相等的实数根,那么k的取值范围是_____.
,则下列说法正确的有:_________________.(填序号)
①该二次函数的图象一定过定点;
②若该函数图象开口向下,则的取值范围为:;
③当且时,的最大值为;
④当且该函数图象与轴两交点的横坐标满足时,的取值范围为:.
:cos245°-tan30°sin60°=______.
三、解答题(共66分)
19.(10分)如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为____.
20.(6分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元)
x
销售量y(件)
销售玩具获得利润w(元)
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
21.(6分)如图,四边形ABCD是矩形,E为CD边上一点,且AE、BE分别平分∠DAB、∠ABC.
(1)求证:△ADE≌△BCE;
(2)已知AD=3,求矩形的另一边AB的值.
22.(8分)国家规定,中、,某区就“你每天在校体育活动时间是多少”,其中A组为t<,≤t<1h,C组为1h≤t<,D组为t≥.
请根据上述信息解答下列问题:
(1)本次调查数据的众数落在组内,中位数落在组内;
(2)该辖区约有18000名初中学生,请你估计其中达到国家规定体育活动时间的人数.
23.(8分)如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.
(1)写出D点坐标;
(2)求双曲线的解析式;
(3)作直线AC交y轴于点E,连结DE,求△CDE的面积.
24.(8分)解下列方程:
(1)x2+2x﹣3=0;
(2)x(x﹣4)=12﹣3x.
25.(10分)在Rt△ABC中,AC=BC,∠C=90°,求:
(1)cosA;
(2)当AB=4时,求BC的长.
26.(10分)如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.
(1)求B、D两点的坐标;
(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M,设F为y轴一动点,当线段PM长度最大时,求PH+HF+CF的最小值;
(3)在第(2)问中,当PH+HF+CF取得最小值时,将△OHF绕点O顺时针旋转60°后得到△OH′F′,过点F′作OF′的垂线与x轴交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使得点D、Q、R、S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、A
【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.
【详解】解:x2-6x-4=0,
x2-6x=4,
x2-6x+32=4+32,
(x-3)2=13,
故选:A.
【点睛】
此题考查了解一元二次方程-:(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;(3),最好使方程的二次项的系数为1,一次项的系数是2的倍数.
2、A
【分析】设获得的利润为y元,由题意得关于x的二次函数,配方,写成顶点式,利用二次函数的性质可得答案.
【详解】解:设获得的利润为y元,由题意得:
∵a=﹣1<0
∴当x=150时,y取得最大值2500元.
故选A.
【点睛】
本题考查了二次函数在实际问题中的应用,正确地写出函数关系式,并明确二次函数的性质,是解题的关键.
3、A
【解析】∵∠A=90°,AC=5,AB=12,
∴BC==13,
∴cosC=,
故选A.
4、D
【分析】利用圆的切线的性质定理、等腰三角形的性质即可得出.
【详解】解:∵PD切⊙O于点C,∴OC⊥CD,
在Rt△OCD中,又CD=OC,∴∠COD=45°.
∵OC=OA,∴∠OCA=×45°=°.
∴∠PCA=90°-°=°.
故选:D.
【点睛】
本题考查切线的性质定理,熟练掌握圆的切线的性质定理、等腰三角形的性质是解题的关键.
5、B
【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.
【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,
连接CD,
∵△ABC是等边三角形,AB是直径,
∴EF⊥BC,
∴F是BC的中点,
∵E为BD的中点,
∴EF为△BCD的中位线,
∴CD∥EF,
∴CD⊥BC,BC=4,CD=2,
故BD=,
故选:B.
【点睛】
本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.
6、A
【分析】根据矩形的性质和直角三角形的性质以及中位线的性质,即可得到答案.
【详解】∵,分别为,的中点,
∴MN是∆OBC的中位线,
∴OB=2MN=2×3=6,
∵四边形是矩形,
∴OB=OD=OA=OC=6,即:AC=12,
∵AB=6,
∴AC=2AB,
∵∠ABC=90°,
∴=30°.
故选A.
【点睛】
本题主要考查矩形的性质和直角三角形的性质以及中位线的性质,掌握矩形的对角线互相平分且相等,是解题的关键.
7、B
【分析】作出图形,设内切圆⊙O与△ABC三边的切点分别为D、E、F,连接OE、OF可得四边形OECF是正方形,根据正方形的四条边都相等求出CE、CF,根据切线长定理可得AD=AF,BD=BE,从而得到AF+BE=AB,再根据三角形的周长的定义解答即可.
【详解】解:如图,设内切圆⊙O与△ABC三边的切点分别为D、E、F,连接OE、OF,
∵∠C=90°,
∴四边形OECF是正方形,
∴CE=CF=1,
由切线长定理得,AD=AF,BD=BE,
∴AF+BE=AD+BD=AB=5,
∴三角形的周长=5+5+1+1=1.
故选:B
【点睛】
本题考查了三角形的内切圆与内心,切线长定理,作辅助线构造出正方形是解题的关键,难点在于将三角形的三边分成若干条小的线段,作出图形更形象直观.
8、A
【分析】随机事件就是可能发生也可能不发生的事件,根据定义即可判断.
【详解】,这两个圆是等圆,属于随机事件,符合题意;
B.⊙O的半径为5,OP=3,点P在⊙O外,属于不可能事件,不合题意;
,属于必然事件,不合题意;
,属于必然事件,不合题意;
故选:A.
【点睛】
本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、,,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
9、D
【解析】A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;
B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;
C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;
D、画树状图如下:
由于共有6种等可能结果,而出现红色和蓝色的只有1种,
所以游戏者配成紫色的概率为,
故选D.
10、C
【分析】由已知条件2x=3y,根据比例的性质,即可求得答案.
【详解】解:∵2x=3y,
∴=.
故选C.
【点睛】
本题考查比例的性质,本题考查比较简单,解题的关键是注意比例变形与比例的性质.
二、填空题(每小题3分,共24分)
11、①③④.
【解析】首先根据二次函数图象开口方向可得,根据图象与y轴交点可得,再根据二次函数的对称轴,结合a的取值可判定出b>0,根据a,b,c的正负即可判断出①的正误;把代入函数关系式,再根据对称性判断出②的正误;把中即可判断出③的正误;利用图象可以直接看出④的正误.
【详解】解:根据图象可得:,