文档介绍:该【辽宁省大连金普新区五校联考2022年九年级数学第一学期期末调研模拟试题含解析 】是由【相惜】上传分享,文档一共【22】页,该文档可以免费在线阅读,需要了解更多关于【辽宁省大连金普新区五校联考2022年九年级数学第一学期期末调研模拟试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项
,请将本试卷和答题卡一并交回.
,请务必将自己的姓名、.
、准考证号与本人是否相符.
,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
(﹣3,4)绕原点顺时针方向旋转180°后得到点B,则点B的坐标为()
A.(3,﹣4) B.(﹣4,3) C.(﹣4,﹣3) D.(﹣3,﹣4)
,抛物线y=ax2+bx+c交x轴分别于点A(﹣3,0),B(1,0),交y轴正半轴于点D,
①2a﹣b=0;
②a+b+c=0;
③当m≠﹣1时,a﹣b>am2+bm;
④当△ABC是等腰直角三角形时,a=;
⑤若D(0,3),则抛物线的对称轴直线x=﹣1上的动点P与B、D两点围成的△PBD周长最小值为3,其中,正确的个数为( )
、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A. B. C. D.
,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(1,0),抛物线的对称轴交x轴于点D,CE∥AB,:①a>0;②b>0;③1a+2b+c<0;④AD+CE=( )
A.①② B.①③ C.②③ D.②④
,在中,分别为边上的中点,则与的面积之比是( )
A. B. C. D.
()
A. B.
C. D.
,再向下平移2个单位,所得到的抛物线是()
A. B. C. D.
,正方形的边长为4,点在的边上,且,与关于所在的直线对称,将按顺时针方向绕点旋转得到,连接,则线段的长为()
B.
,中国华为技术有限公司推出新的服务器芯片组,此举正值中国努力提高芯片制造能力,,电子元件的尺寸大幅度缩小,()
A. B. C. D.
,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )
A. B. C. D.
二、填空题(每小题3分,共24分)
△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为_____.
(x﹣2)﹣x+2=0的正根为_____.
,ABC是⊙O的内接三角形,AD是△ABC的高,AE是⊙O的直径,且AE=4,若CD=1,AD=3,则AB的长为______.
、n分别为的一元二次方程的两个不同实数根,则代数式的值为________
,则的值为_________________.
,根据图示,求得和的值分别为____________.
,,与交于点,已知,,,那么线段的长为__________.
,已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则的值为_____.
三、解答题(共66分)
19.(10分)在一个不透明的袋子中装有3个乒乓球,分别标有数字1,2,3,,记下标号后放回,再从袋子中随机摸出1个乒乓球记下标号,用画树状图(或列表)的方法,求两次摸出的乒乓球标号之和是偶数的概率.
20.(6分)如图,平行四边形中,,是上一点,,连接,点是的中点,且满足是等腰直角三角形,连接.
(1)若,求的长;
(2)求证:.
21.(6分)如图,已知l1∥l2,Rt△ABC的两个顶点A,B分别在直线l1,l2上,,若l2平分∠ABC,交AC于点D,∠1=26°,求∠2的度数.
22.(8分)甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:
根据以上信息,整理分析数据如下:
平均成绩/环
中位数/环
众数/环
方差
甲
a
7
7
乙
7
b
8
c
(1)a=_____;b=_____;c=_____;
(2)填空:(填“甲”或“乙”).
①从平均数和中位数的角度来比较,成绩较好的是_____;
②从平均数和众数的角度来比较,成绩较好的是_____;
③成绩相对较稳定的是_____.
23.(8分)如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、C(3,0),点B为抛物线顶点,直线BD为抛物线的对称轴,点D在x轴上,连接AB、BC,∠ABC=90°,AB与y轴交于点E,连接CE.
(1)求项点B的坐标并求出这条抛物线的解析式;
(2)点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系武,并求出S的最大值;
(3)如图2,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.
24.(8分)已知抛物线(是常数)经过点.
(1)求该抛物线的解析式和顶点坐标.
(2)若点在抛物线上,且点关于原点的对称点为.
①当点落在该抛物线上时,求的值;
②当点落在第二象限内,取得最小值时,求的值.
25.(10分)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.
求证:AF=CE.
26.(10分)“亚洲文明对话大会”在北京成功举办,~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:
(1)请直接写出_______,_______,第3组人数在扇形统计图中所对应的圆心角是_______度.
(2)请补全上面的频数分布直方图.
(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?
参考答案
一、选择题(每小题3分,共30分)
1、A
【分析】根据点A(﹣3,4)绕坐标原点旋转180°得到点B,即可得出答案.
【详解】解:根据点A(﹣3,4)绕坐标原点旋转180°得到点B,可知A、B两点关于原点对称,
∴点B坐标为(3,﹣4),
故选:A.
【点睛】
本题考查坐标与图形变换—旋转,解题关键是熟练掌握旋转的旋转.
2、D
【分析】把A、B两点坐标代入抛物线的解析式并整理即可判断①②;
根据抛物线的顶点和最值即可判断③;
求出当△ABC是等腰直角三角形时点C的坐标,进而可求得此时a的值,于是可判断④;
根据利用对称性求线段和的最小值的方法(将军饮马问题)求解即可判断⑤.
【详解】解:把A(﹣3,0),B(1,0)代入y=ax2+bx+c得到,消去c得到2a﹣b=0,故①②正确;
∵抛物线的对称轴是直线x=﹣1,开口向下,∴x=﹣1时,y有最大值,最大值=a﹣b+c,
∵m≠﹣1,∴a﹣b+c>am2+bm+c,∴a﹣b>am2+bm,故③正确;
当△ABC是等腰直角三角形时,C(﹣1,2),
可设抛物线的解析式为y=a(x+1)2+2,把(1,0)代入解得a=﹣,故④正确,
如图,连接AD交抛物线的对称轴于P,连接PB,则此时△BDP的周长最小,最小值=PD+PB+BD=PD+PA+BD=AD+BD,
∵AD==3,BD==,
∴△PBD周长最小值为3,故⑤正确.
故选D.
【点睛】
本题考查了二次函数的图象与性质、二次函数的图象与其系数的关系、待定系数法求二次函数的解析式和求三角形周长最小值的问题,熟练掌握二次函数的图象与性质是解题的关键.
3、C
【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.
【详解】解:画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
∴两次都摸到白球的概率是:.
故答案为C.
【点睛】
本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.
4、D
【分析】①根据抛物线开口方向即可判断;
②根据对称轴在y轴右侧即可判断b的取值范围;
③根据抛物线与x轴的交点坐标与对称轴即可判断;
④根据抛物线与x轴的交点坐标及对称轴可得AD=BD,再根据CE∥AB,即可得结论.
【详解】①观察图象开口向下,a<0,所以①错误;
②对称轴在y轴右侧,b>0,所以②正确;
③因为抛物线与x轴的一个交点B的坐标为(1,0),对称轴在y轴右侧,
所以当x=2时,y>0,即1a+2b+c>0,所以>③错误;
④∵抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,
∴AD=BD.
∵CE∥AB,
∴四边形ODEC为矩形,
∴CE=OD,
∴AD+CE=BD+OD=OB=1,
所以④正确.
综上:②④正确.
故选:D.
【点睛】
本题考查了二次函数图象与系数的关系,解决本题的关键是综合运用二次函数图象上点的坐标特征、抛物线与x轴的交点进行计算.
5、A
【分析】根据相似三角形的性质即可求出答案.
【详解】由题意可知:是的中位线,
,
,
,
故选:A.
【点睛】
本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.
6、B
【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.
【详解】A、△=0,方程有两个相等的实数根;
B、△=4+76=80>0,方程有两个不相等的实数根;
C、△=-16<0,方程没有实数根;
D、△=1-4=-3<0,方程没有实数根.
故选:B.
7、B
【分析】根据“左加右减、上加下减”的平移规律即可解答.
【详解】解:抛物线向左平移1个单位,再向下平移2个单位,所得到的抛物线是,
故答案为:B.
【点睛】
本题考查了抛物线的平移,解题的关键是熟知“左加右减、上加下减”的平移规律.
8、C
【分析】如图,连接BE,根据轴对称的性质得到AF=AD,∠EAD=∠EAF,根据旋转的性质得到AG=AE,∠GAB=∠∠GAB=∠EAF,根据全等三角形的性质得到FG=BE,根据正方形的性质得到BC=CD=AB=.
【详解】解:如图,连接BE,
∵△AFE与△ADE关于AE所在的直线对称,
∴AF=AD,∠EAD=∠EAF,
∵△ADE按顺时针方向绕点A旋转90°得到△ABG,
∴AG=AE,∠GAB=∠EAD.
∴∠GAB=∠EAF,
∴∠GAB+∠BAF=∠BAF+∠EAF.
∴∠GAF=∠EAB.
∴△GAF≌△EAB(SAS).
∴FG=BE,
∵四边形ABCD是正方形,
∴BC=CD=AB=1.
∵DE=1,
∴CE=2.
∴在Rt△BCE中,BE=,
∴FG=5,
故选:C.
【点睛】
本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.