文档介绍:III、综合部分
第四章线性多变量系统的综合与设计
引言
前面我们介绍的内容都属于系统的描述与分析。系统的描述主要解决系统的建模、各种数学模型(时域、频域、内部、外部描述)之间的相互转换等;系统的分析,则主要研究系统的定量变化规律(如状态方程的解,即系统的运动分析等)和定性行为(如能控性、能观测性、稳定性等)。而综合与设计问题则与此相反,即在已知系统结构和参数(被控系统数学模型)的基础上,寻求控制规律,以使系统具有某种期望的性能。一般说来,这种控制规律常取反馈形式,因为无论是在抗干扰性或鲁棒性能方面,反馈闭环系统的性能都远优于非反馈或开环系统。在本章中,我们将以状态空间描述和状态空间方法为基础,仍然在时域中讨论线性反馈控制规律的综合与设计方法。
问题的提法
给定系统的状态空间描述
若再给定系统的某个期望的性能指标,它既可以是时域或频域的某种特征量(如超调量、过渡过程时间、极、零点),也可以是使某个性能函数取极小或极大。此时,综合问题就是寻求一个控制作用u,使得在该控制作用下系统满足所给定的期望性能指标。
对于线性状态反馈控制律
对于线性输出反馈控制律
其中为参考输入向量。
由此构成的闭环反馈系统分别为
或
闭环反馈系统的系统矩阵分别为
即或。
闭环传递函数矩阵
我们在这里将着重指出,作为综合问题,将必须考虑三个方面的因素,即1)抗外部干扰问题;2)抗内部结构与参数的摄动问题,即鲁棒性(Robustness)问题;3)控制规律的工程实现问题。
一般说来,综合和设计是两个有区别的概念。综合将在考虑工程可实现或可行的前提下,来确定控制规律u;而对设计,则还必须考虑许多实际问题,如控制器物理实现中线路的选择、元件的选用、参数的确定等。
性能指标的类型
总的说来,综合问题中的性能指标可分为非优化型和优化型性能指标两种类型。两者的差别为:非优化型指标是一类不等式型的指标,即只要性能值达到或好于期望指标就算是实现了综合目标,而优化型指标则是一类极值型指标,综合目标是使性能指标在所有可能的控制中使其取极小或极大值。
对于非优化型性能指标,可以有多种提法,常用的提法有:
1、以渐近稳定作为性能指标,相应的综合问题称为镇定问题;
2、以一组期望的闭环系统极点作为性能指标,相应的综合问题称为极点配置问题。从线性定常系统的运动分析中可知,如时域中的超调量、过渡过程时间及频域中的增益稳定裕度、相位稳定裕度,都可以被认为等价于系统极点的位置,因此相应的综合问题都可视为极点配置问题;
3、以使一个多输入多输出(MIMO)系统实现为“一个输入只控制一个输出”作为性能指标,相应的综合问题称为解耦问题。在工业过程控制中,解耦控制有着重要的应用;
4、以使系统的输出y(t)无静差地跟踪一个外部信号作为性能指标,相应的综合问题称为跟踪问题。
对于优化型性能指标,则通常取为相对于状态x和控制u的二次型积分性能指标,即
其中加权阵或,且能观测。综合的任务就是确定,使相应的性能指标极小。通常,将这样的控制称为最优控制,确切地说是线性二次型最优控制问题,即LQ调节器问题。
研究综合问题的主要内容
主要有两个方面:
1、可综合条件可综合条件也就是控制规律的存在性问题。可综合条件的建立,可避免综合过程的盲目性。
2、控制规律的算法问题这是问题的关键。作为一个算法,评价其优劣的主要标准是数值稳定性,即是否出现截断或舍入误差在计算积累过程中放大的问题。一般地说,如果问题不是病态的,而所采用的算法又是数值稳定的,则所得结果通常是好的。
工程实现中的一些理论问题
在综合问题中,不仅要研究可综合条件和算法问题,而且要研究工程实现中提出的一系列理论问题。主要有:
1、状态重构问题由于许多综合问题都具有状态反馈形式,而状态变量为系统的内部变量,通常并不能完全直接量测或采用经济手段进行量测,解决这一矛盾的途径是:利用可量测输出y 和输入u来构造出不能量测的状态x,相应的理论问题称为状态重构问题,即观测器问题和Kalman滤波问题。
2、鲁棒性(Robustness)问题
3、抗外部干扰问题
本章的组织结构如下。本章将首先讨论极点配置问题。将讨论利用极点配置方法来设计控制系统。这里将设计一个受制于初始条件的倒立摆系统,使其在规定的时间内,返回到垂直位置;其次还将讨论状态观测器的设计;最后研究含积分器的伺服系统和不含积分器的伺服系统。我们将设计一个倒立摆系统,当我们施加于小车一个阶跃输入时,仍可使该系统稳定(也就是说,摆不会倒下来)。
。,给出问题提法、可配置条件及极点配置的算法。