文档介绍:复习:列方程解应用题有哪些步骤
对于这些步骤,应通过解各种类型的问题,才能深刻体会与真正掌握列方程解应用题。
上一节,我们学均增长(下降)率问题”,现在,我们要学习解决“面积、体积问题。
实际问题与一元二次方程(三)
面积、体积问题
一、复习引入
?
一般三角形的面积公式是什么呢?
?
长方形的面积公式又是什么?
?
?
?
?
要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?
27
21
分析:这本书的长宽之比是9:7,依题知正中央的矩形两边之比也为9:7
解法一:设正中央的矩形两边分别为9xcm,7xcm
依题意得
解得
故上下边衬的宽度为:
左右边衬的宽度为:
探究3
要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?
27
21
分析:这本书的长宽之比是9:7,正中央的矩形两边之比也为9:7,由此判断上下边衬与左右边衬的宽度之比也为9:7
解法二:设上下边衬的宽为9xcm,左右边衬宽为7xcm
依题意得
解方程得
(以下同学们自己完成)
方程的哪个根合乎实际意义?
为什么?
例1. (2004年,镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.
解: (1)
方案1:长为米,宽为7米;
方案2:长为16米,宽为4米;
方案3:长=宽=8米;
注:本题方案有无数种
(2)在长方形花圃周长不变的情况下,长方形花圃面积不能增加2平方米.
,则宽为(16-x)米.
x(16-x)=63+2,
x2-16x+65=0,
∴此方程无解.
∴在周长不变的情况下,长方形花圃的面积不能增加2平方米
1、用20cm长的铁丝能否折成面积为30cm2的矩形,若能够,求它的长与宽;若不能,请说明理由.
练习:
解:设这个矩形的长为xcm,则宽为 cm,
即
x2-10x+30=0
这里a=1,b=-10,c=30,
∴此方程无解.
∴用20cm长的铁丝不能折成面积为30cm2的矩形.
例2:某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.
补充例题与练习
(1)
(2)
(1)
解:(1)如图,设道路的宽为x米,则
化简得,
其中的 x=25超出了原矩形的宽,应舍去.
∴图(1)中道路的宽为1米.
则横向的路面面积为,
分析:此题的相等关系是矩形面积减去道路面积等于540米2。
解法一、如图,设道路的宽为x米,
32x 米2
纵向的路面面积为。
20x 米2
注意:这两个面积的重叠部分是 x2 米2
所列的方程是不是
?
图中的道路面积不是
米2。
(2)